Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T17:55:20.227Z Has data issue: false hasContentIssue false

Creeping friction on amorphous polymers: Dissipation through molecular relaxation

Published online by Cambridge University Press:  01 February 2011

René M. Overney
Affiliation:
Department of Chemical Engineering, University of Washington, Seattle, WA 98195, U.S.A.
Scott Sills
Affiliation:
Department of Chemical Engineering, University of Washington, Seattle, WA 98195, U.S.A.
Get access

Abstract

The dissipation mechanisms of nanoscale friction between a scanning force microscopy (SFM) tip and amorphous polystyrene are found to reside solely within the polymer's intrinsic molecular mobility, and are discussed with respect to the glass transition temperature. In both the glassy and the rubbery states, lateral force microscopy friction results revealed the dissipative behavior as activated relaxation processes with potential barrier heights of 7 kcal/mol and 83 kcal/mol, respectively. These values correspond to hindered phenyl (side chain) rotation and to the α-relaxation, respectively. The velocity relationship with friction, F(v), was found to satisfy simple fluctuation surface potential models with F ∝const -ln(v) and F ∝const -ln(v)2/3. Within ∼27 K above the glass transition temperature, friction displayed a shear thinning type behavior, also found in materials that exhibit multiple phases.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gray, T., Buenviaje, C., Overney, R. M., et al., Appl. Phys. Lett. 83, 2563 (2003).Google Scholar
2. Heslot, F., Baumberger, T., Perrin, B., et al., Phys. Rev. E 49, 4973 (1994).Google Scholar
3. Sang, Y., Dube, M., and Grant, M., Phys. Rev. Lett. 87, 174301 (2001).Google Scholar
4. He, M., Szuchmacher Blum, A., Overney, G., et al., Phys. Rev. Lett. 88, 154302 (2002).Google Scholar
5. Dudko, O. K., Filippov, A. E., Klafter, J., et al., Chem. Phys. Lett. 352, 499 (2002).Google Scholar
6. Sills, S. E. and Overney, R. M., Phys. Rev. Lett. 91, 095501 (2003).Google Scholar
7. Siepmann, J. I. and McDonald, I. R., Phys. Rev. Lett. 70, 453 (1993).Google Scholar
8. Bonner, T. and Baratoff, A., Surf. Sci. 377–379, 1082 (1997).Google Scholar
9. Mikulski, P. T. and Harrison, J. A., J. Am. Chem. Soc. 123, 6873 (2001).Google Scholar
10. Overney, R. M., Takano, H., and Fujihira, M., Europhys. Lett. 26, 443 (1994).Google Scholar
11. Meyer, E., Overney, R., Dransfeld, K., et al., Nanoscience: Friction and Rheology on the Nanometer Scale (World Scientific Publishing Co. Ltd., Singapore, 1998).Google Scholar
12. Xia, T. K., Ouyang, J., Ribarsky, M. W., et al., Phys. Rev. Lett. 69, 1967 (1992).Google Scholar
13. Gao, J. P., Luedtke, W. D., and Landman, U., J Phys. Chem. B 101, 4013 (1997).Google Scholar
14. Overney, R. M., Buenviaje, C., Luginbuhl, R., et al., J. Therm. Anal. Cal. 59, 205 (2000).Google Scholar
15. Buenviaje, C. K., Ge, S. R., Rafailovich, M. H., et al., Mat. Res. Soc. Symp. Proc. 552, 187 (1998).Google Scholar
16. Briscoe, B. J. and Evans, D. C. B., Proc. R. Lond. A 380, 389 (1982).Google Scholar
17. Ferry, J. D., Viscoelastic Properties of Polymers (John Wiley, New York, 1980).Google Scholar
18. Reich, S. and Eisenberg, A., J. Poly. Sci. A-2 10, 1397 (1972).Google Scholar
19. Boyer, R. F. and Turley, S. G., in Molecular basis of transitions and relaxations, edited by Meier, D.J. (Gordon and Breach Science Publishers, New York, 1978), p. 333.Google Scholar
20. Ferry, J. D., Viscoelastic Properties of Polymers (Wiley, New York, 1980).Google Scholar