Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-20T05:11:28.890Z Has data issue: false hasContentIssue false

Creep Mechanisms of Fully-Lamellar TiAl Based Upon Interface Sliding

Published online by Cambridge University Press:  10 February 2011

L. M. Hsiung
Affiliation:
Materials Science and Technology Division, Lawrence Livermore National Laboratory, L-369, P.O. Box 808, Livermore, CA 94551-9900, U.S.A.
T. G. Nieh
Affiliation:
Materials Science and Technology Division, Lawrence Livermore National Laboratory, L-369, P.O. Box 808, Livermore, CA 94551-9900, U.S.A.
Get access

Abstract

Deformation mechanisms of fully lamellar TiAl with a refined microstructure (γ lamellae: 100 ∼ 300 nm thick, α2 lamellae: 10 ∼50 nm thick) crept at 760°C have been investigated. As a result of a fine structure, the motion and multiplication of lattice dislocations within both γ and α2 lamellae are limited at low creep stresses (< 400 MPa). Therefore, the glide and climb of lattice dislocations are insignificant to creep deformation. The cooperative motion of interfacial dislocations on γ/α2 and -γ/γ interfaces (i.e. interface sliding) is proposed to be the dominant deformation mechanism at low stresses. Lattice dislocations impinged on lamellar interfaces are found to be the major obstacles impeding the motion of interfacial dislocations. The number of impinged lattice dislocations increases as the applied stress increases and, subsequently, causes the pileup of interfacial dislocations along the interfaces. Accordingly, deformation twinning activated by the pileup of interfacial dislocations is proposed to be the dominant deformation mechanism at high stresses (> 400 MPa).

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kim, Y-W., Acta Metall. Mater. 40, 1121 (1992).CrossRefGoogle Scholar
2. Wang, J. N., Schwartz, A. J., Nieh, T. G., Liu, C. T., Sikka, V. K. and Clemens, D. R., in Gamma Titanium Aluminides, ed. Kim, Y-W. et al., TMS (1995), p. 949.Google Scholar
3. 3. Beddoes, J., Wallace, W. and Zhao, L., Intr. Mater. Rev., 40, 97 (1995).Google Scholar
4. Liu, C. T., Maziasz, P. J. and Wright, J. L., Mat. Res. Soc. Symp. Proc., 460, 83 (1997).CrossRefGoogle Scholar
5. Parthasarathy, T. A., Mendiratta, M.G. and Dimiduk, D.M., Scripta Mater., 37, 315 (1997).CrossRefGoogle Scholar
6. Hsiung, L. M. and Nieh, T. G., Mater. Sci. Engrg., A239–240, 438 (1997).CrossRefGoogle Scholar
7. Hsiung, L. M., Schwartz, A. J. and Nieh, T. G., Scripta Mater. 36, 1017 (1997).CrossRefGoogle Scholar
8. Wang, J. N. and Nieh, T. G., Acta Mater., 46, 1887 (1998).CrossRefGoogle Scholar
9. Weertman, J. and Weertman, J. R., Elementary Dislocation Theory, Macmillan, NewYork (1964).Google Scholar
10. Hsiung, L. M. and Nieh, T. G., Intermetallics, in press.Google Scholar
11. Mori, T. and Fujita, H., Acta Metall., 28, 771 (1980).CrossRefGoogle Scholar
12. Yoo, M. H., Scripta Mater., 39, 569 (1998).CrossRefGoogle Scholar