Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T09:44:20.617Z Has data issue: false hasContentIssue false

Crack Behaviour at Bi-Crystal Interfaces: A Mixed Atomistic and Continuum Approach

Published online by Cambridge University Press:  21 March 2011

Arun R. Pillai
Affiliation:
Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, Canada S7N5A9
Ronald E. Miller
Affiliation:
Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, Canada S7N5A9
Get access

Abstract

Interfacial defects like grain boundaries and phase boundaries play an important role in the mechanical behaviour of engineering alloys. In this work the problem of a crack on a bi-crystal interface is studied at the atomic scale, with the goal of elucidating the effects of varrying interatomic interaction on crack behaviour and to assess the suitability of existing fracture criteria to the anisotropic bi-crystal case. Calculations are performed using the Quasicontinuum (QC) method [1]. Using suitable approximations, some of the existing fracture criteria were used to predict ductile or brittle fracture and compared to the QC results.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Shenoy, V. B., Miller, R., Tadmor, E. B., Rodney, D., Philips, R., and Ortiz, M., J. Mech. Phys. Sol., 47:611642, 1999.Google Scholar
[2] Rice, J. R. and Thompson, R.. Phil. Mag., 29(1):7397, 1974.10.1080/14786437408213555Google Scholar
[3] Rice, J. R.. J. Mech. Phys. Sol., 40:239271, 1992.Google Scholar
[4] Rice, J. R., Suo, Z., and Wang, J. S.. Metal Ceramic Interfaces, pages 269294. Pergamon Press, New York, 1990.10.1016/B978-0-08-040505-6.50036-2Google Scholar
[5] Abraham, F. F., Schneider, D., Land, B., Lifka, D., Skovira, J., Gerner, J., and Rosenkrantz, M.. J. Mech. Phys. Sol., 45(9):14611471, 1998.Google Scholar
[6] Farkas, Diana. Scripta Materialia, 39(4):533536, 1998.10.1016/S1359-6462(98)00193-6Google Scholar
[7] Panova, Julia and Farkas, Diana. Metallurgical and materials Transactions A, 29:951955, 1998.Google Scholar
[8] Zhou, S. J., Beazley, D. M., and Lomdahl, P. S.. Phys. Rev. Lett., 78(3):479482, 1997.Google Scholar
[9] Thomson, R. and Zhou, S. J.. Phys. Rev. B, 44(1):4455, 1994.Google Scholar
[10] Cleri, F., Phillpot, S. R., Wolf, D., and Yip, S.. J. Amer. Ceramic Soc., 81(3):501516, 1998.Google Scholar
[11] Gumbsch, Peter. J. Mater. Res., 10(11):28972907, 1995.Google Scholar
[12] Abraham, F. F., Broughton, J. Q., Bernstein, N., and Kaxiras, E.. Comput. Phys., 12:538, 1998.Google Scholar
[13] Daw, M. S. and Baskes, M. I.. Phys. Rev. B, 29:64436453, 1984.10.1103/PhysRevB.29.6443Google Scholar
[14] Li, F. Z., Shih, C. F., and Needleman, A.. Engng. Fracture Mech., 21(2):405421, 1985.Google Scholar
[15] Cho, S.B., Lee, K.R., Choy, Y.S., and Yuuki, R.. Engng. Fracture Mech., 43(4):603614, 1992.Google Scholar
[16] Foiles, S. M., Baskes, M. I., and Daw, M. S.. Phys. Rev. B, 33:79837991, 1986.Google Scholar
[17] Beltz, G. E. and Rice, J. R.. Acta Met. et Mat., 40:S321–S331, 1992.10.1016/0956-7151(92)90291-LGoogle Scholar
[18] Hirth, J. P. and Lothe, J.. Theory of Dislocations. Krieger, Malabar, Florida, 1992.Google Scholar
[19] Pillai, A. R.. Crack Behaviour at Bimaterial Interface: A Mixed Atomistic and Continuum Approach. University of Saskatchewan, Thesis, Saskatoon, Canada, 2000.Google Scholar