Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T02:33:40.227Z Has data issue: false hasContentIssue false

Coupled atomistic-mesoscopic model of polycrystalline plasticity

Published online by Cambridge University Press:  21 March 2011

Fabrizio Cleri
Affiliation:
also with Istituto Nazionale per la Fisica della Materia (INFM), Roma, Italy
Gregorio D'Agostino
Affiliation:
Ente Nuove Tecnologie, Energia e Ambiente (ENEA), Divisione Materiali Centro Ricerche Casaccia, CP 2400, I-00100 Roma, Italy
Alessandra Satta
Affiliation:
Istituto Nazionale per la Fisica della Materia (INFM), and Dipartimento di Fisica, Universitá di Cagliari S.P. Monserrato-Sestu, 09057 Monserrato, Cagliari, Italy
Luciano Colombo
Affiliation:
Istituto Nazionale per la Fisica della Materia (INFM), and Dipartimento di Fisica, Universitá di Cagliari S.P. Monserrato-Sestu, 09057 Monserrato, Cagliari, Italy
Get access

Abstract

We discuss a microstructure evolution framework which couples atomic-level information about extended-defect interactions into a mesoscopic model; the latter, in turn, describes the dy-namic evolution of a statistical population of grain boundaries and dislocations. Atomistic simulations are carried out by means of molecular dynamics simulations on both isolated and interacting dislocations, grain boundaries, triple junctions, microcracks; the reference material for such studies is, at present, Silicon with the Stillinger-Weber potential. The mesoscale model describes the motion of discrete triple junctions (and, consequently, of the continuous network of adjoining grain boundaries) embedded in a continuous medium containing a homogenous, evolving distribution of dislocations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Honeycombe, R. W. K., The Plastic Deformation of Metals, Edward Arnold, 1985.Google Scholar
2. Loretto, C. A. ed., Dislocations and Properties of Real Materials, Inst. of Metals, London, 1985.Google Scholar
3. Humpreys, J. C., Recrystallization and Related Annealing Phenomena, Pergamon, 1996.Google Scholar
4. Needleman, A. and Rice, J. R., Acta Met. 28, 1315 (1980).Google Scholar
5. Cocks, A. C. F. and Gill, S. P., Acta Mater. 44, 4765 and 4777 (1996).Google Scholar
6. Pan, J. and Cocks, A. C. F., Comp. Mat. Sci. 1, 95 (1993).Google Scholar
7. Pan, J. and Cocks, A. C. F., Acta Mater. 43, 1395 (1995).Google Scholar
8. Cocks, A. C. F., J. Mech. Phys. Solids 44, 1429 (1996).Google Scholar
9. Cleri, F., Physica A 282, 339 (2000).Google Scholar
10. Cleri, F. and D'Agostino, G., J. Mat. Res., submitted.Google Scholar
11. Cleri, F., Phillpot, S. R., Yip, S. and Wolf, D., J. Am. Cer. Soc. 81, 553 (1998).Google Scholar
12. Ashby, R. and Verrall, A.S., Acta Metall., 81, 213 (1973).Google Scholar
13. Schoenfelder, B., Phillpot, S. R., Wolf, D. and Gleiter, H., Interf. Sci. 7, 44 (1999).Google Scholar
14. Keblinski, P., Phillpot, S. R., Wolf, D. and Gleiter, H., Acta Mat. 44, 344 (1998).Google Scholar
15. Costantini, S., Alippi, P., Colombo, L. and Cleri, F., Phys. Rev. B 63, 45302 (2001).Google Scholar
16. Haasen, P., in Physical Metallurgy, p.271, Cambridge University Press, 1978.Google Scholar