Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-09T05:48:15.447Z Has data issue: false hasContentIssue false

Could Life Originate between Mica Sheets?: Mechanochemical Biomolecular Synthesis and the Origins of Life

Published online by Cambridge University Press:  31 January 2011

Helen Greenwood Hansma*
Affiliation:
[email protected], UCSB, Physics, 6334 Broida, Santa Barbara, 93106, United States, 805 7292119
Get access

Abstract

The materials properties of mica have surprising similarities to those of living systems. The mica hypothesis is that life could have originated between mica sheets, which provide stable compartments, mechanical energy for bond formation, and the isolation needed for Darwinian evolution. Mechanical energy is produced by the movement of mica sheets, in response to forces such as ocean currents or temperature changes. The energy of a carbon-carbon bond at room temperature is comparable to a mechanical force of 6 nanoNewtons (nN) moving a distance of 100 picometers. Mica's movements may have facilitated mechanochemistry, resulting in the synthesis of prebiotic organic molecules. Furthermore, mica's movements may have facilitated the earliest cell divisions, at a later stage of life's origins. Mica's movements, pressing on lipid vesicles containing proto-cellular macromolecules, might have facilitated the blebbing off of ‘daughter’ protocells. This blebbing-off process has been observed recently in wall-less L-form bacteria and is proposed to be a remnant of the earliest cell divisions (Leaver, et al. Nature457, 849 (2009).

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Hazen, R. M., Genesis : the scientific quest for life's origin (Joseph Henry Press, Washington, DC, 2005).Google Scholar
2 Dyson, F. J., Origins of life (Cambridge University Press, Cambridge [England]; New York, 1999).10.1017/CBO9780511546303Google Scholar
3 Pashley, R. M. and Israelachvili, J. N., J. Colloid Interface Sci. 97, 446 (1984).10.1016/0021-9797(84)90316-3Google Scholar
4 Hansma, H. G. and Laney, D. E., Biophys. J. 70, 1933 (1996).10.1016/S0006-3495(96)79757-6Google Scholar
5 Schulze-Makuch, D. and Irwin, L. N., Life in the universe : expectations and constraints (Springer-Verlag, Berlin; Heidelberg, 2006).Google Scholar
6 Leaver, M., Dominguez-Cuevas, P., Coxhead, J. M., Daniel, R. A., and Errington, J., Nature 457, 849 (2009).10.1038/nature07742Google Scholar
7 Sozzani, P., Behling, R. W., Schilling, F. C., Briickner, S., Helfand, E., Bovey, F. A., and Jelinski, L. W., Macromolecules 22, 3318 (1989).10.1021/ma00198a021Google Scholar
8 Zubay, G. L., Origins of life on the earth and in the cosmos (Academic Press, San Diego, 2000).Google Scholar
9M. Beyer, K. and Clausen-Schaumann, H., Chemical Reviews 105, 2921 (2005).10.1021/cr030697hGoogle Scholar
10 Grandbois, M., Beyer, M., Rief, M., Clausen-Schaumann, H., and Gaub, H. E., Science 283, 1727 (1999).10.1126/science.283.5408.1727Google Scholar
11 Best, R. B., Li, B., Steward, A., Daggett, V., and Clarke, J., Biophys J 81, 2344 (2001).10.1016/S0006-3495(01)75881-XGoogle Scholar
12 Israelachvili, J., Intermolecular and Surface Forces (Academic Press, New York, 1991).Google Scholar
13 Hickenboth, C. R., Moore, J. S., White, S. R., Sottos, N. R., Baudry, J., and Wilson, S. R., Nature 446, 423 (2007).10.1038/nature05681Google Scholar
14 Ohara, S., Kakegawa, T., and Nakazawa, H., Orig Life Evol Biosph 37, 215 (2007).10.1007/s11084-007-9067-4Google Scholar
15 Benson, S. W. and Berson, J. A., Journal of the American Chemical Society 84, 152 (1962).10.1021/ja00861a005Google Scholar
16 Konopka, M., Turansky, R., Reichert, J., Fuchs, H., Marx, D., and Stich, I., Phys Rev Lett 100, 115503 (2008).10.1103/PhysRevLett.100.115503Google Scholar
17 Kim, Y. S., Randolph, T. W., Stevens, F. J., and Carpenter, J. F., J Biol Chem 277, 27240 (2002).10.1074/jbc.M202492200Google Scholar
18 Webb, J. N., Webb, S. D., Cleland, J. L., and Carpenter, J. F., PNAS 98, 7259 (2001).10.1073/pnas.131194798Google Scholar
19 John, R. J. St., Carpenter, J. F., Balny, C., and Randolph, T. W., J. Biol. Chem. 276, 46856 (2001).10.1074/jbc.M107671200Google Scholar
20 Cipolla, M. J., Gokina, N. I., and Osol, G., FASEB J 16, 72 (2002).10.1096/cj.01-0104hypGoogle Scholar
21 Mammoto, A., Connor, K. M., Mammoto, T., Yung, C. W., Huh, D., Aderman, C. M., Mostoslavsky, G., Smith, L. E. H., and Ingber, D. E., Nature 457, 1103 (2009).10.1038/nature07765Google Scholar