Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T18:04:48.718Z Has data issue: false hasContentIssue false

Corrosion Testing of Stainless Steel-Zirconium:Metal Waste Forms

Published online by Cambridge University Press:  10 February 2011

D. P. Abraham
Affiliation:
Chemical Technology Division, Argonne National Laboratory, Argonne, IL 60439
L. J. Simpson
Affiliation:
Chemical Technology Division, Argonne National Laboratory, Argonne, IL 60439
M. J. Devries
Affiliation:
Chemical Technology Division, Argonne National Laboratory, Argonne, IL 60439
S. M. Mcdeavitt
Affiliation:
Chemical Technology Division, Argonne National Laboratory, Argonne, IL 60439
Get access

Abstract

Stainless steel-zirconium (SS-Zr) alloys have been developed as waste forms for the disposal of metallic waste generated during the electrometallurgical treatment of spent nuclear fuel. The waste forms incorporate irradiated cladding hulls, components of the alloy fuel, noble metal fission products, and actinide elements. The baseline waste form is a stainless steel- 15 wt% zirconium (SS-15Zr) alloy. This article presents microstructures and some of the corrosion studies being conducted on the waste form alloys. Electrochemical corrosio n, immersion corrosion, and vapor hydration tests have been performed on various alloy compositions to evaluate corrosion behavior and resistance to selective leaching of simulated fission products. The SS-Zr waste forms immobilize and retain fission products very effectively and show potential for acceptance as high-level nuclear waste forms.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. McDeavitt, S. M., Abraham, D. P., and Park, J. Y., J. Nucl. Mat. 257 p. 2134 (1998).Google Scholar
2. Abraham, D.P., McDeavitt, S.M., and Park, J. Y., Metall. Mater. Trans. 27A p. 2151 (1996).Google Scholar
3. Ackerman, J. P., Johnson, T. R., Chow, L. S. H., Carls, E. L., Hannum, W. H., and Laidler, J. J., Prog. Nucl. Energy 31 p. 141 (1997).Google Scholar
4. Abraham, D.P., Keiser, D. D. Jr., and McDeavitt, S.M., Proc. Intl. Conf. on Decommissioning and Decontamination and on Nuclear and Hazardous Waste Management (SPECTRUM'98), Vol.2, American Nuclear Society, LaGrange Park, IL p. 783 (1996).Google Scholar
5. Jones, D. A., Principles and Prevention of Corrosion, Macmillan Publishing p. 145 (1992).Google Scholar
6. Farmer, J. C., McCright, R. D., Roy, A. K., Gdowski, G. E., Wang, F. T., Estill, J. C., King, K. J., Gordon, S. R., Fleming, D. L., and Lum, B. Y., Proc. 6th Intl. Conf. on Nucl. Eng., ICONE-6290, (1998).Google Scholar
7. Ogard, A. E. and Kerrisk, J. F., LA-10188-MS, Los Alamos National Laboratory (1984).Google Scholar
8. Bates, J. K., Seitz, M. G., and Steindler, M. J., Nucl. and Chem. Waste Manag. 5 p. 63 (1984).Google Scholar
9. Ebert, W. L. and Bates, J. K., Mater. Res. Soc. Symp. Proc. 176 p. 339 (1990).Google Scholar