Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T08:07:27.613Z Has data issue: false hasContentIssue false

Corrosion of Silicate Glasses: An Overview

Published online by Cambridge University Press:  21 February 2011

Larry L. Hench*
Affiliation:
University of Florida, Advanced Materials Research Center, One Progress Blvd., #14, Alachua, FL 32615
Get access

Abstract

The corrosion of silicate glasses is described in terms of four stages of surface attack which result in six types of surface conditions depending upon the glass composition and various environmental and physical factors. Type I and II surfaces correspond to durable glasses which have a very high surface SiO2 content whereas Type IV and V surfaces are unstable. Type IIIA surfaces include bioactive glasses which chemically bond to bone and Type IIIB surfaces are characteristic of the alkali borosilicate nuclear waste glasses which form multiple layers of precipitated surface films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hench, L.L. and Clark, D.E., J. Non-Cryst. Solids 28, 83 (1978).Google Scholar
2. Hench, L.L., J. De Physique, Colloque C9, supplement au no. 12, Tome 43, C9–625 (1982).Google Scholar
3. Douglas, R.W. and El-Shamy, T.M., J. Amer. Ceram. Soc. 50 (1), 18 (1967).Google Scholar
4. Lyle, A.K., J. Amer. Ceram. Soc. 26 (6), 201204 (1943).CrossRefGoogle Scholar
5. Zagar, L. and Schillmoeller, L., Glastechn, Ber. 33 (4), 409–116 (1960).Google Scholar
6. Rana, M.A. and Douglas, R.W., Phys. Chem. Glasses 2 (6), 179195 (1961).Google Scholar
7. Wang, F.F. and Tooley, F.V., J. Amer. Ceram. Soc. 41 (11), 467469 (1958).Google Scholar
8. Wang, F.F. and Tooley, F.V., J. Amer. Ceram. Soc. 41 (12), 521524 (1958).Google Scholar
9. Das, C.R., Glass Ind. 50, 422427, 483–485 (1969).Google Scholar
10. Das, C.R. and Douglas, R.W., Phys. Chem. Glasses 8 (5), 178184 (1967).Google Scholar
11. Bacon, F.R. and Calcamuggio, G.L., Am. Ceram. Soc. Bull. 46 (9), 850855 (1967).Google Scholar
12. Douglas, R.W. and Isard, J.O., J. Soc. Glass Tech. 33, 289 (1949).Google Scholar
13. Tsuchihashi, S. and Sedido, E., Bull. Chem. Soc. Japan 32 (8), 868872 (1959).Google Scholar
14. Weyl, W.A., Glass Ind. 28 (8), 408412, 428–432 (1947).Google Scholar
15. Rynd, J. and Rastogi, A.K., Am. Ceram. Soc. Bull. 53, 631 (1974).Google Scholar
16. Chappell, R.A. and Stoddart, C.T.H., Phys. Chem. Glasses 15, 130 (1974).Google Scholar
17. Pantano, C.G. Jr., Dove, D.B., and Onoda, G.Y. Jr., J. Non-Crystal. Solids 19, 41 (1975).Google Scholar
18. Clark, D.E., Pantano, C.G. Jr., and Hench, L.L., Corrosion of Glass (Books for Industry, New York, 1979).Google Scholar
19. Gossink, G., Grefth, H.A.M. de, and Werner, J.W., J. Amer. Ceram. Soc. 52, 4 (1979).Google Scholar
20. Lanford, W.A., Davis, K., Lamarche, P., Laursen, T., Groleau, R., and Doremus, R.H., J. Non-Crystal. Solids 33, 249 (1979).Google Scholar
21. Chick, L.A., McVay, G.L., Millinger, G.B. and Roberts, R.F., Battelle Memorial Inst., PNL Report 3465, 1980.Google Scholar
22. Budd, S.M., in Glass Surfaces, edited by Day, D.E. (North Holland Publishing Co., Amsterdam, 1975), p. 55.Google Scholar
23. Bach, H. and Bauke, F.G.K., Phys. & Chem. of Glasses 15, 123 (1974).Google Scholar
24. Baucke, F.K., J. Non-Crystal. Solids 14, 13 (1974).Google Scholar
25. Sanders, D.M., Person, W.B. and Hench, L.L., Appl. Spectroscopy 26, 530 (1972).Google Scholar
26. Sanders, D.M., Person, W.B. and Hench, L.L., Appl. Spectroscopy 28, 247 (1974).Google Scholar
27. Clark, D.E., Ethridge, E.C., Dilmore, M.F. and Hench, L.L., Glass Technol. 18, 121 (1977).Google Scholar
28. Pantano, C.G. Jr., Clark, A.E. Jr., and Hench, L.L., J. Amer. Ceram. Soc. 57, 412 (1974).CrossRefGoogle Scholar
29. Ogino, M., Ohuchi, F. and Hench, L.L., J. Biomedical Maters. Res. 14, 55 (1980).Google Scholar
30. Dilmore, M.F., Clark, D.E. and Hench, L.L., Amer. Ceram. Soc. Bull. 57, 1040 (1978).Google Scholar
31. Dilmore, M.F., Clark, D.E. and Hench, L.L., Amer. Ceram. Soc. Bull. 58, 1111 (1979).Google Scholar
32. Fujiu, T., Ogino, M., Kariya, M. and Schimura, T. (private communication).Google Scholar
33. Oka, Y., Ricker, K.S. and Tomozawa, M., J. Amer. Ceram. Soc. 62 (11–12), 631632 (1977).Google Scholar
34. Oka, Y. and Tomozawa, M., J. Non-Crystal. Solids 42, 532 (1980).CrossRefGoogle Scholar
35. Hench, L.L., Splinter, R.J., Greenlee, T.K. and Allen, W.C., J. Biomedical Maters. Res. 2, 117 (1971).Google Scholar
36. Wilson, J., Pigott, G.H., Schoen, F.J., and Hench, L.L., J. Biomed. Maters. Res. 15, 805 (1981).Google Scholar
37. Hench, L.L. and Clark, A.E., in Biocompatibility of Orthopedic Implants, Vol.2, edited by Williams, D.F. (CRC Press, Boca Raton, Florida, 1982) Chap. 6.Google Scholar
38. Hench, L.L. and Paschall, H.C., J. Biomed. Maters. Res. Symp. 4, 25 (1973).Google Scholar
39. Hench, L.L. and Ethridge, E.C., Biomaterials-An Interfacial Approach (Academic Press, New York, 1982).Google Scholar
40. Grambow, B., presented at the 5th International Symp. on the Scientific Basis for Radioactive Waste Management, Berlin, June 1982.Google Scholar
41. Hench, L.L., Werme, L. and Lodding, A., in Scientific Basis for Radioactive Management V, edited by Lutze, W. (Elsevier Sci. Pub. Co., New York, 1982) pp. 153162.Google Scholar
42. McVay, G.L. and Buckwalter, C.Q., Nuclear Technologies, Vol.51 (1980).Google Scholar
43. Hench, L.L., Clark, D.E., Yen-Bower, E. Lue, Nuclear Chemical Waste Management 1, 59 (1980).Google Scholar
44. Wicks, G.C., Proceedings of Waste Management 1981 Conference, Tucson, Arizona, Feb. 23–37, 1981.Google Scholar
45. Hench, A.A. and Hench, L.L., Nuclear, J. and Chemical Waste Management 4 (4), 231258 (1983).Google Scholar
46. Sanders, D.M. and Hench, L.L., Am. Ceram. Soc. Bull. 52 (9), 666 (1973).Google Scholar