Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T14:25:29.426Z Has data issue: false hasContentIssue false

Correlations between higher-order rings and microvoids in hydrogenated amorphous silicon

Published online by Cambridge University Press:  04 February 2015

Parthapratim Biswas
Affiliation:
Department of Physics and Astronomy, The University of Southern Mississippi, Hattiesburg, MS 39406, U.S.A. Department of Physics and Astronomy, Ohio University, Athens, OH 45701, U.S.A.
David Alan Drabold
Affiliation:
Department of Physics and Astronomy, Ohio University, Athens, OH 45701, U.S.A.
Get access

Abstract

In this paper we report the structure of voids in several thousand atom models of hydrogenated amorphous silicon. The models are produced by jointly employing experimental information from Smets and coworkers [1] and first principles simulations [2]. We demonstrate the existence of a useful correlation between the presence of large irreducible rings and the voids in hydrogenated amorphous silicon networks. Molecular hydrogen is observed in the models, and discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Smets, A.H.M., Kessels, W.M.M., and van de Sanden, M.C.M., Applied Physics Letters, 82 1547 (2003).CrossRefGoogle Scholar
Biswas, P., Drabold, D. A., and Atta-Fynn, R., Phys. Rev. B 76 125210 (2007).CrossRefGoogle Scholar
Shah, A.V., Schade, H., Vaneck, M., Meierl, J., Vallaut-Sauvain, E., Wyrsch, N., Kroll, U., Drozl, C and Bailat, J, Progess in Photovoltaics 12 113 (2004)CrossRefGoogle Scholar
Mackenzie, K.D., LeComber, P.G. and Spear, W. E., Applied Physics A: materials science and processing 31 72 (1983).CrossRefGoogle Scholar
Takeda, T. and Sano, S., Proc. MRS Symposium 118 399 (1988).CrossRefGoogle Scholar
Snell, A. J., Mackenzie, K. D., Spear, W.E., LeComber, P.G. and Hughes, A.J., Applied Physics 24 357 (1981).CrossRefGoogle Scholar
Street, R.A., Hydrogenated Amorphous Silicon, Cambridge Solid State Science Series, Cambridge, UK (1991).CrossRefGoogle Scholar
D’Antonio, P. and Konnert, J. H., Phys. Rev. Letts 16 1161 (1979).CrossRefGoogle Scholar
Acco, S., Williamson, D. L., Stolk, P. A., Saris, F. W., Roorda, S., Zalm, P. C., Phys. Rev. B 53, 4415 (1996).CrossRefGoogle Scholar
Loehneysen, H v, Schinkand, J. H., Beyer, W., Phys. Rev. Lett. 52 549 (1984).CrossRefGoogle Scholar
Baum, J., Gleason, K. K., Pines, A., Garroway, A. N., and Reimer, J. A., Phys. Rev. Letts 56 1377 (1986).CrossRefGoogle Scholar
Manfredotti, C., Fizzotti, F., Boero, M., Pastrino, P., Polesllo, P., and Vittone, E., Phys. Rev. B 50 18046 (1994).CrossRefGoogle Scholar
Tourier, H., Zellma, K., Morhange, J. -F., Phys. Rev. B 59 10076 (1999).Google Scholar
Guinier, A., Fournet, G., Walker, C.B., and Yudowitch, K.L., Small-angle scattering of X rays, Wiley, New York ( 1995).Google Scholar
Abtew, T. A., Inam, F., and Drabold, D. A., Europhys. Letts 79 3600 (2007).CrossRefGoogle Scholar
Pandey, A., Pdraza, N, and Drabold, D.A., Physical Rev. Applied 2 054005 (2014).CrossRefGoogle Scholar
Soler, J. M., Artacho, E., Gale, J. D., Garcia, A., Junquera, J., Ordejon, P., and Sanchez-Portal, D., J. Phys.: Condens. Matter 14 2745 (2002).Google Scholar
An irreducible ring is said to be topologically degenerate when multiple paths of the same length exist that start and end at the same atomic site. Such rings are included in the distribution shown in figure 3L.Google Scholar
Lucovsky, G., Nemanich, R. J., and Knights, J. C., Phys. Rev. B 19 2064 (1979).CrossRefGoogle Scholar
Biswas, P. and Timilsina, R., J. Phys.: Condens. Matter 32 056801 (2011).Google Scholar