Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T17:41:41.587Z Has data issue: false hasContentIssue false

Correlation of Stress With Photo-Degradation in Hydrogenated Amorphous Silicon Prepared by Hot-Wire CVD

Published online by Cambridge University Press:  10 February 2011

Daxing Han
Affiliation:
Dept of Physics & Astronomy, Univ of North Carolina, Chapel Hill, NC 27599–3255, USA
Tamihiro Gotoh
Affiliation:
Dept of ECE, Gifu Univ, 1–1 Yanagido, Gifu 501–11, Japan
Motoi Nishio
Affiliation:
Dept of ECE, Gifu Univ, 1–1 Yanagido, Gifu 501–11, Japan
Tomonari Sakamoto
Affiliation:
Dept of ECE, Gifu Univ, 1–1 Yanagido, Gifu 501–11, Japan
Shuichi Nonomura
Affiliation:
Dept of ECE, Gifu Univ, 1–1 Yanagido, Gifu 501–11, Japan
Shoji Nitta
Affiliation:
Dept of ECE, Gifu Univ, 1–1 Yanagido, Gifu 501–11, Japan
Qi Wang
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401, USA.
Eugene Iwaniczko
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401, USA.
Get access

Abstract

An innovative bending-beam method is used to study the stress of thin film a-Si:H deposited on thin quartz by hot-wire chemical vapor deposition (CVD) techniques. When the deposition temperature increases from 280 to 440 °C the hydrogen content decreases from 8 to <1 at.%, and the initial compressive stress also decreases from 420 to 74 MPa. We found that there is a 10−4 photo-induced increase of the initial compressive stress under 300 mW/cm2 light-soaking, which can be recovered to the initial value by thermal annealing at 160 °C for 1 h. The results imply that the Si-H bonds contribute to the compressive stress in the a-Si:H film. There is no simple correlation between the stress and the photodegradation of the electronic properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Staebler, D. L. and Wronski, C. R., Appl. Phys. Lett. 31, 292 (1977).Google Scholar
2.Stutzmann, M., Appl. Phys. Lett. 47, 21 (1985).Google Scholar
3.Guha, S., Boer, W. den, Agarwal, S. C., and Hack, M., Appl. Phys. Lett. 47, 947 (1985).Google Scholar
4.Kurth, S. R., Tsuo, Y. S., and Tsu, R., Appl. Phys. Lett. 49, 951 (1986).Google Scholar
5.Harbison, J. P., Willams, A. J., and Lang, D. V., J. Appl. Phys. 55, 946 (1984).Google Scholar
6.Paduschek, P., Hopfl, C H., and Mitlehner, H., Thin Solid Films 110, 291 (1983).Google Scholar
7.Mahan, A. H., Carapella, J., Nelson, B. P., Crandall, R. S., and Balberg, I., J. Appl. Phys. 69, 6728 (1991).Google Scholar
8.Wu, Y., Stephen, J. Todd., Han, D., Rutland, J. M., Crandall, R. A., and Mahan, H., Phys. Rev. Lett. 77, 2049 (1996).Google Scholar
9.Gotoh, T., Nonomura, S., Nishio, M., Masui, N. and Nitta, S., Proc of 17th International Conference on Amorphous and Microcrystalline Silicon, in J. Non-Cryst. Sol (1977).Google Scholar
10.Gotoh, T., Nonomura, S., Hirata, S., and Nitta, S., Progress in Natural Science 6, S34 (1996).Google Scholar
11.”Evidence for light-induced increase of Si-H bonds in undoped a-Si:H”, Zhao, Yiping, Kong, Guaglin, Pan, Guanggin, and Liao, Xianbo, Phys. Rev. Lett. 74, 558 (1995).Google Scholar