Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T06:01:06.727Z Has data issue: false hasContentIssue false

Correlation of Electrical, Structural, and Optical Properties of Erbium In Silicon

Published online by Cambridge University Press:  21 February 2011

J. L. Benton
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
D. J. Eaglesham
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
M. Almonte
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
P. H. Citrin
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
M. A. Marcus
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
D. L. Adler
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
D. C. Jacobson
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
J. M. Poate
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
Get access

Abstract

An understanding of the electrical, structural, and optical properites of Er in Si is necessary to evaluate this system as an opto-electronic material. Extended x-ray absorption fine structure, EXAFS, measurements of Er-implanted Si show that the optically active impurity complex is Er surrounded by an O cage of 6 atoms. The Er photoluminescence intensity is a square root function of excitation power, while the free exciton intensity increases linearly. The square root dependence of the 1.54μm-intensity is independent of measurement temperature and independent of co-implanted species. Ion-implantation of Er in Si introduces donor activity, but spreading resistance carrier concentration profiles indicate that these donors do not effect the optical activity of the Er.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Xie, Y. H., Fitzgerald, E. A. and Mii, Y. J. J. J. Appl. Phys. 70(6), 3223 (1991).Google Scholar
2. Benton, J. L., Michel, J., Kimerling, L. C., Jacobson, D. C., Xie, Y. H., Eaglesham, D. J., Fitzgerald, E. A. and Poate, J. M., J. Appl. Phys. 70 (5), 2667 (1991).Google Scholar
3. Eaglesham, D. J., Michel, J., Fitzgerald, E.A., Jacobson, D.C., Poate, J. M., Benton, J. L., Polman, A., Xie, Y. H. and Kimerling, L. C., Appl. Phys. Lett. 58, 2797 (1991).Google Scholar
4. Michel, J., Benton, J. L., Ferrante, R. F., Jacobson, D. C., Eaglesham, D. J., Fitzgerald, E. A., Xie, Y. H., Poate, J. M. and Kimerling, L. C., J. Appl. Phys. 70 2672 (1991).Google Scholar
5. Adler, D. L., Jacobson, D. C., Eaglesham, D. J., Marcus, M. A., Benton, J. L., Poate, J. M., and Citrin, P. H., Appl. Phys. Lett. 61 (18) 2181 (1991).Google Scholar
6. Weber, J., Schmid, W. and SauerPhys, R.. Rev. B, 21, (6) 2401 (1980).Google Scholar
7. Taguchi, A., Taniguchi, M. and Takahei, K., Appl. Phys. Lett., 60, 5604 (1991).Google Scholar
8. Liesert, B.J. Heijmink, Godlewski, M., Gregorkiewicz, T., and Ammerlaan, C. A. J., Appl. Phys. Lett., 59 (25) 3279 (1991).Google Scholar
9. Efeoglu, H., Evans, J. H., J. M Langer, Peaker, A. R., Rowell, N. L., Noel, J-P, Perovic, D. D., Jackman, T.E. and Houghton, D. C. Mat. Res. Soc. Symp. Proc. 220, 367 (1991).Google Scholar