Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T07:32:42.959Z Has data issue: false hasContentIssue false

Correlation Functions for Nanostructures Obtained by Nucleation and Growth Kinetics

Published online by Cambridge University Press:  10 February 2011

D. Crespo
Affiliation:
Departament de Física Aplicada, Universitat Politènica de Catalunya, Campus Nord UPC, Mòdul B4, 08034 - Barcelona, SPAIN, [email protected]
V. Garrido
Affiliation:
Departament de Física Aplicada, Universitat Politènica de Catalunya, Campus Nord UPC, Mòdul B4, 08034 - Barcelona, SPAIN, [email protected]
Get access

Abstract

Most of the physical properties of systems underlying first order phase transitions, I. e. the scattering properties, can be obtained from the spatial correlation functions. For the case of nucleation and growth kinetics it is possible to obtain all the correlation functions from the particle size distribution. In this paper we obtain the spatial correlation functions corresponding to several kinetics; in particular the correlation functions corresponding to the microstructure developed in partitioning transformations are obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Guinier, A. and Fournet, G., Small-angle scattering of X-rays, John Wiley and Sons, New York, 1955.Google Scholar
2. Ohta, S., Ohta, T. and Kawasaki, K., Physica 140A, 478 (1987).Google Scholar
3. Kolmogorov, A. N., Bull. Acad. Sci. USSR, Phys. Ser. 1, 355 (1937).Google Scholar
4. Johnson, W. A. and Mehl, P. A., Trans. Am. Inst. Min. Metall. Pet. Eng. 135, 416 (1939).Google Scholar
5. Avrami, M., J. Chem. Phys. 7, 1103 (1939); 8, 212 (1940); 9, 177 (1941).Google Scholar
6. Crespo, D. and Pradell, T., Phys. Rev. B 54, 3101 (1996).Google Scholar
7. Crespo, D., Pradell, T., Clavaguera-Mora, M. T. and Clavaguera, N., Mat. Sci. & Eng A 238, 160 (1997).Google Scholar
8. Crespo, D., Pradell, T., Clavaguera-Mora, M. T. and Clavaguera, N., Phys. Rev. B 55, 3435 (1997).Google Scholar
9. Garrido, V. and Crespo, D., Phys. Rev. E, 56, 2781 (1997).Google Scholar
10. Sekimoto, K., Phys. Lett. 105A, 390 (1984).Google Scholar
11. Sekimoto, K., J. Phys. Soc. Jpn. 53, 2545 (1984).Google Scholar
12. Christian, J. W., The Theory of Transformations in Metals and Alloys, Pergamon Press, Oxford (1975) p. 482.Google Scholar
13. Pradell, T., Crespo, D., Clavaguera, N., Zhu, J. and Clavaguera-Mora, M.T., NanoStructured Materials, Vol.8, No. 3, pp. 345357 (1997).Google Scholar