Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T16:27:22.080Z Has data issue: false hasContentIssue false

Correlation Between Electrical Properties and Residual Defects in Se+-Implanted InP After Rapid Thermal Annealing

Published online by Cambridge University Press:  22 February 2011

P. MÜller
Affiliation:
Friedrich-Schiller-Universität Jena, Institut für Festkörperphysik, Max-Wien-Platz 1, D – 07743 Jena, Germay
T. Bachmann
Affiliation:
Friedrich-Schiller-Universität Jena, Institut für Festkörperphysik, Max-Wien-Platz 1, D – 07743 Jena, Germay
E. Wendler
Affiliation:
Friedrich-Schiller-Universität Jena, Institut für Festkörperphysik, Max-Wien-Platz 1, D – 07743 Jena, Germay
W. Wesch
Affiliation:
Friedrich-Schiller-Universität Jena, Institut für Festkörperphysik, Max-Wien-Platz 1, D – 07743 Jena, Germay
U. Richter
Affiliation:
Labour für Mikrodiagnostik, Weinbergweg 2, D - 06120 Halle, Germany
Get access

Abstract

>100> -semiinsulating InP was implanted with 600 keV Se-ions at temperatures between 300K and 425K with an ion dose of 1 ×1014 cm−2. After capping the samples with about 120 nm siliconoxynitride annealing was performed at 700°C up to 975°C using a graphite strip heater system. The annealed samples were analyzed with Rutherford backscattering, electron microscopy and conventional Hall measurements. The results show, that a strong correlation exists between defects remaining after annealing (for instance dislocations, loops, microtwins) and the measured electrical properties. An implantation temperature ≦ 395K and annealing at least at 800°C for 50 s is necessary to obtain high performance electrically active layers. The activation of selenium in InP can be well described using a simple thermodynamical model. The model yields an activation energy of EA = (1.0 ± 0. 1) eV which can be understood as the energy necessary to split-up selenium-vacancy-complexes and a diffusion energy of Ed = (2.0 ± 0.2) eV representing material transport of the semiconductor material.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sharma, B.L., Solid State Technology 11 (1989) 113.Google Scholar
2. Donnelly, J.P. and Hurwitz, C.E., Appl. Phys. Lett. 31 (1977) 418.Google Scholar
3. Donnelly, J.P. and Hurwitz, C.E., Solid State Electron. 23 (1980) 943.CrossRefGoogle Scholar
4. Krdutle, H., J. Appl. Phys. 63 (1980) 4418.Google Scholar
5. Woodhouse, J.D., Donnelly, J.P., Nitishin, P.H., Owens, E.B. and Ryan, J.L., Solid State Electron. 27 (1984) 677.CrossRefGoogle Scholar
6. Ras, M.V., Nadella, R.K. and Holland, O.W., J. Appl. Phys. 71 (1992) 126.Google Scholar
7. Nadella, R.K., Rao, M.V., Simons, P.S., Chi, P.H. and Dietrich, H.B., J. Appl. Phys. 70 (1991) 7188.Google Scholar
8. Sealy, B.J., Barrett, N.J. and Bensalem, R., J. Phys. D, Appl. Phys. 19 (1986) 2147.Google Scholar
9. Morris, N. and Sealy, B.J., Inst. Phys. Conf. Ser. No. 91 (1987) chapter 2, 145.Google Scholar
10. Bachmann, T. and Bartsch, H., Nucl. Instr. and Methods B43 (1989) 529.Google Scholar
11. Pauw, L.J. van der, Philipps Technische Rundschau 20 (1958/1959) 230.Google Scholar
12. Miiller, P., Bachmann, T., Wendler, E. and Wesch, W., J. Appl. Phys., to be published.Google Scholar
13. Xiong, F., Nieh, C.W., Jamieson, D.N., Vreeland, T. Jr., and Tombrello, T.A., Mat. Res. Soc. Proc. vol. 100 (1988) 105.Google Scholar
14. Miller, P., PhD thesis, University of Jena, 1993.Google Scholar