Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-05T13:47:43.116Z Has data issue: false hasContentIssue false

Correlated Magnetoexcitons in Semiconductor Quantum Dots at Finite Temperature

Published online by Cambridge University Press:  15 February 2011

D.J. Dean
Affiliation:
Physics Division and Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
M.R. Strayer
Affiliation:
Physics Division and Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
J.C. Wells
Affiliation:
Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
Get access

Abstract

We describe computational methods for the theoretical study of explicit correlations beyond the mean field in excitons confined in semiconductor quantum dots in terms of the Auxiliary-Field Monte Carlo (AFMC) method [1]. Using AFMC, the many-body problem is formulated as a Feynman path integral at finite temperatures and evaluated to numerical precision. This approach is ideally suited for implementation on high-performance parallel computers. Our strategy is to generate a set of mean-field states via the Hartree-Fock method for use as a basis for the AFMC calculations. We present preliminary results.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Koonin, S.E., Dean, D.J., and Langanke, K., Phys. Rep. 278, 1 (1997).Google Scholar
2. Jacak, L., Hawrylak, P., and Wójs, A., Quantum Dots, (Springer, Berlin, 1997).Google Scholar
3. Landin, L. et al. , Science 280, 262 (1998).Google Scholar
4. Iafrate, G.J. and Stroscio, M.A., IEEE Trans. Electron Devices 43, 1621 (1996).Google Scholar
5. Hess, K., Challenges in Nanostructure Simulation, ITRI Workshop on Vision for Nanotechnology R & D in the Next Decade, January 1999, Arlington, VA. Google Scholar
6. Sugiyama, G. and Koonin, S.E., Ann. Phys. 168, 1 (1986).Google Scholar
7. Hubbard, J., Phys. Rev. Lett. 3, 77 (1959); R.L. Stratonovich, Dokl. Akad. Nauk. S.S.S.R. 115, 1097 (1957).Google Scholar
8. Linden, W. von der, Phys. Rep. 220, 53 (1992).Google Scholar
9. Rom, N. et al. , Chem. Phys. Lett. 270, 382 (1997).Google Scholar
10. Zhang, Shiwei, Carlson, J., and Gubernatis, J.E., Phys. Rev. B 55, 7464 (1997).Google Scholar
11. Dean, D.J. et al. , Phys. Rev. C 58, 536 (1998).Google Scholar
12. Radha, P.B. et al. , Phys. Rev. C 56, 3079 (1997).Google Scholar
13. Dean, D.J. and Koonin, S.E., Phys. Rev. C 60, 54306 (1999).Google Scholar
14. Miller, H.-M. and Koonin, S.E., Phys. Rev. B 54, 14532 (1996).Google Scholar
15. Ashoori, R. C., Nature 379, 413 (1996).Google Scholar
16. Oosterkamp, T.H. et al. , Phys. Rev. Lett. 82, 2931 (1999).Google Scholar
17. Reimann, S.M. et al. , Phys. Rev. Lett. 83, 3270 (1999).Google Scholar
18. Chamon, C. de C. and Wen, X.G., Phys. Rev. B 49, 8227 (1994).Google Scholar