Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T01:50:34.155Z Has data issue: false hasContentIssue false

Correlated Local Atomic Displacements: The Microscopic Origins for Macroscopic Phenomena.

Published online by Cambridge University Press:  21 March 2011

Frank Bridges
Affiliation:
Department of Physics, University of California, Santa Cruz, CA 95064
Daliang Cao
Affiliation:
Department of Physics, University of California, Santa Cruz, CA 95064
Corwin H. Booth
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, CA 94720
Get access

Abstract

In many systems for which there are several atoms in the unit cell, the displacements of the atoms may be locally correlated even though there is no long range coherence. Such displacements can play an important role in determining various macroscopic properties. We consider several examples to demonstrate this phenomena - the local distortions in the colossal magneto-resistive (CMR) and charge-ordered manganites, magnetic field induced distortions in CMR materials that are connected to macroscopic magnetostriction, and correlated displacements of tetrahedral units within the negative thermal expansion material ZrW2O8. The distortions in the CMR materials observed using XAFS change rapidly just below Tc and are attributed to the formation of polarons as the temperature is increased through Tc. In the ferromagnetic state, the lattice is more ordered for CMR systems; consequently applying a magnetic field for T ∼ Tc should decrease the local distortions. Such an effect has been observed and is a much larger effect than the measured macroscopic magnetostriction. Finally, in ZrW2O8 the tetrahedral and octahedral units are found to be very rigid as expected. More surprising is that the width of the pair-distance distribution for the W-Zr atom-pair is also quite small, indicating that the W-Zr linkage is stiff. In contrast, for the W-W pair, the distribution width grows rapidly with T, indicating correlated displacements of two WO4 tetrahedral units.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Teo, B. K., EXAFS: Basic Principles and Data Analysis (Springer-Verlag, New York, 1986).Google Scholar
[2] Booth, C. H., Bridges, F., Bauer, E. D., Li, G. G., Boyce, J. B., Claeson, T., Chu, C. H., and Xiong, Q., Phys. Rev. B 52, R15745 (1995).Google Scholar
[3] Booth, C. H., Bridges, F., Boyce, J., Claeson, T., Lairson, B. M., Liang, R., and Bonn, D. A., Phys. Rev. B 54, 9542 (1996).Google Scholar
[4] Ramirez, A. P. and Kowach, G. R., Phys. Rev. Lett. 80, 4903 (1998).Google Scholar
[5] Zener, C., Phys. Rev. 82, 403 (1951).Google Scholar
[6] Anderson, P. W. and Hasegawa, H., Phys. Rev. 100, 675 (1955).Google Scholar
[7] Gennes, P. G. de, Phys. Rev. 118, 141 (1960).Google Scholar
[8] Booth, C. H., Bridges, F., Kwei, G. H., Lawrence, J. M., Cornelius, A. L., and Neumeier, J. J., Phys. Rev. Lett. 80, 853 (1998).Google Scholar
[9] Booth, C. H., Bridges, F., Kwei, G. H., Lawrence, J. M., Cornelius, A. L., and Neumeier, J. J., Phys. Rev. B 57, 10440 (1998).Google Scholar
[10] Subías, G., García, J., Proietti, M. G., and Blasco, J., Phys. Rev. B 56, 8183 (1997).Google Scholar
[11] Billinge, S. J. L., DiFrancesco, R. G., Kwei, G. H., Neumeier, J. J., and Thompson, J. D., Phys. Rev. Lett. 77, 715 (1996).Google Scholar
[12] Cao, D., Bridges, F., Worledge, D. C., Booth, C. H., and Geballe, T., Phys. Rev. B 61, 11373 (2000).Google Scholar
[13] Millis, A. J., Littlewood, P. B., and Shraiman, B. I., Phys. Rev. Lett. 74, 5144 (1995).Google Scholar
[14] Millis, A. J., Shraiman, B. I., and Mueller, R., Phys. Rev. Lett. 77, 175 (1996).Google Scholar
[15] Röder, H., Zang, J., and Bishop, A. R., Phys. Rev. Lett. 76, 1356 (1996).Google Scholar
[16] Cao, D., Bridges, F., Booth, C. H., and Neumeier, J. J., Phys. Rev. B 62, 8954 (2000).Google Scholar
[17] Bridges, F., Brown, G., Cao, D., and Anderson, M., J. Synchrotron Rad. 8, 366 (2001).Google Scholar
[18] Mary, T. A., Evans, J. S. O., Vogt, T., and Sleight, A. W., Science 272, 90 (1996).Google Scholar
[19] Pryde, A. K. A., Hammonds, K. D., Dove, M. T., and V. H., et al. , J. Physics: Condens. Matter 8, 10973 (1996).Google Scholar
[20] Jorgensen, J. D., Hu, Z., Teslic, S., Argyriou, D. N., Short, S., Evans, J. S. O., and Sleight, A. W., Phys. Rev. B 59, 215 (1999).Google Scholar