Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-20T00:06:59.271Z Has data issue: false hasContentIssue false

Corrections to the Optical Transition Energies in Single-Wall Carbon Nanotubes of Smaller Diameters

Published online by Cambridge University Press:  01 February 2011

Georgii G. Samsonidze
Affiliation:
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139–4307, U.S.A.
Riichiro Saito
Affiliation:
Department of Physics, Tohoku University and CREST JST, Aoba, Sendai 980–8578, Japan
Jie Jiang
Affiliation:
Department of Physics, Tohoku University and CREST JST, Aoba, Sendai 980–8578, Japan
Alexander Grüneis
Affiliation:
Department of Physics, Tohoku University and CREST JST, Aoba, Sendai 980–8578, Japan Leibniz Institute for Solid State and Material Research Dresden, D-01171 Dresden, Germany
Naoki Kobayashi
Affiliation:
Department of Physics, Tohoku University and CREST JST, Aoba, Sendai 980–8578, Japan
Ado Jorio
Affiliation:
Depto. de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG 30123–970, Brazil
Shin G. Chou
Affiliation:
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139–4307, U.S.A.
Gene Dresselhaus
Affiliation:
Francis Bitter Magnet Laboratory, and Massachusetts Institute of Technology, Cambridge, MA 02139–4307, U.S.A.
Mildred S. Dresselhaus
Affiliation:
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139–4307, U.S.A. Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139–4307, U.S.A.
Get access

Abstract

Optical spectroscopy characterization of carbon nanotube samples requires accurate determination of their band structure and exciton binding energies. In this paper, we present a non-orthogonal density-functional based tight-binding calculation for the electronic transition energies in single-wall carbon nanotubes. We show that the curvature-induced rehybridization of the electronic orbitals, long-range atomic interactions, and geometrical structure relaxation all have a significant impact on the electronic transition energies in the small diameter limit. After including quasiparticle corrections and exciton binding energies, the calculated electronic transition energies show good agreement with the experimental transition energies observed by photoluminescence and resonance Raman spectroscopy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kataura, H., Kumazawa, Y., Maniwa, Y., Umezu, I., Suzuki, S., Ohtsuka, Y., and Achiba, Y., Synthetic Metals 103, 2555 (1999).Google Scholar
2. Saito, R., Dresselhaus, G., and Dresselhaus, M. S., Physical Properties of Carbon Nanotubes, Imperial College Press, London, 1998.Google Scholar
3. Weisman, R. B. and Bachilo, S. M., Nano Letters 3, 1235 (2003).Google Scholar
4. Fantini, C., Jorio, A., Souza, M., Mai, A. J. Jr, Strano, M. S., Dresselhaus, M. S., and Pimenta, M. A., Phys. Rev. Lett. 93, 147406 (2004).Google Scholar
5. Porezag, D., Frauenheim, T., Köhler, T., Seifert, G., and Kaschner, R., Phys. Rev. B 51, 12947 (1995).Google Scholar
6. Papaconstantopoulos, D. A., Mehl, M. J., Erwin, S. C., and Pederson, M. R., in Tight-Binding Approach to Computational Materials Science, edited by Turchi, P. E. A., Gonis, A., and Colombo, L. (Mater. Res. Soc. Proc. 491, Warrendale, PA, 1998) pp. 221230.Google Scholar
7. Popov, V. N., New Journal of Physics 6, 17 (2004).Google Scholar
8. Samsonidze, Ge. G., Saito, R., Kobayashi, N., Grüneis, A., Jiang, J., Jorio, A., Chou, S. G., Dresselhaus, G., and Dresselhaus, M. S., Appl. Phys. Lett., in press.Google Scholar
9. Jorio, A., Fantini, C., Pimenta, M. A., Capaz, R. B., Samsonidze, Ge. G., Dresselhaus, G., Dresselhaus, M. S., Saito, R., Jiang, J., Kobayashi, N., Grüneis, A., and Saito, R., Phys. Rev. B, submitted.Google Scholar
10. Saito, R., Dresselhaus, G., and Dresselhaus, M. S., Phys. Rev. B 61, 2981 (2000).Google Scholar
11. Ando, T., Journal of Physical Society of Japan 66, 1066 (1997).Google Scholar
12. Kane, C. L. and Mele, E. J., Phys. Rev. Lett. 90, 207401 (2003).Google Scholar
13. Kane, C. L. and Mele, E. J., in Electric Properties of Synthetic Nanostructures, edited by Kuzmany, H., Fink, J., Mehring, M., and Roth, S. (Amer. Inst. of Phys. 723, Woodbury, NY, 2004) pp. 402406.Google Scholar
14. Pedersen, T. G., Phys. Rev. B 67, 073401 (2003).Google Scholar
15. Perebeinos, V., Tersoff, J., and Avouris, P., Phys. Rev. Lett. 92, 257402 (2004).Google Scholar
16. Spataru, C. D., Ismail-Beigi, S., Benedict, L. X., and Louie, S. G., Phys. Rev. Lett. 92, 077402 (2004).Google Scholar