Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T03:09:05.186Z Has data issue: false hasContentIssue false

Controlling 2-Dimensional Growth of Silver Nanoplates

Published online by Cambridge University Press:  10 February 2011

Sihai Chen
Affiliation:
Laboratory for Nanotechnology, School of Materials Science and Engineering, Clemson University, Clemson, SC 29634, U.S.A. Email: [email protected]
David L. Carroll
Affiliation:
Laboratory for Nanotechnology, School of Materials Science and Engineering, Clemson University, Clemson, SC 29634, U.S.A. Email: [email protected]
Get access

Abstract

After the successful synthesis of silver nanoplates with shapes of truncated triangle and disk applying a seed-mediated growth process using cetyltrimethylammonium bromide as a shape controller, we here further report the method for systematic control of the size of silver nanoplate in 2-dimensions. Two ways are found effective in size control: one is through the change of the silver seed amounts, which can produce the nanoplates with the size varying from 210 nm to 40 nm; another is through the mild aging of the as-prepared silver nanoplate solution at a proper temperature, which can fine-tune the shape of the nanoplates, such as from triangle to circle, or from plate to sphere. X-ray and electron diffraction analysis reveal that these nanoplates are single crystals and with their basal plane as (111) planes. The in-plane dipole plasmon band of these nanoplates can thus be manipulated within 900 nm to 400 nm, providing new possibilities for applications in the fields such as infrared absorption, nonlinear optical limiting, and Raman or biochemical diagnosis.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schneider, S., Halbig, P., Grau, H. and Nickel, U., Photochem. Photobiol. 60, 605 (1994).Google Scholar
2. Harfenist, S. A., Wang, Z. L., Alvarez, M. M., Vezmar, I. and Whetten, R. L., J. Phys. Chem. 100, 13 904 (1996).Google Scholar
3. Sun, Y., Mayers, B. T. and Xia, Y., Nano Lett. 2, 481 (2002).Google Scholar
4. Kirkland, A. I., Jefferson, D. A., Duff, D. G., Edward Gameson, P. P., Johnson, B. F. G. and Smith, D. J., Proc. R. Soc. London A 440, 589 (1993).Google Scholar
5. Mock, J. J., Barbic, M., Smith, D. R., Schultz, D. A. and Schultz, S., J. Chem. Phys. 116, 6755 (2002).Google Scholar
6. Klaus, T., Joerger, R., Olsson, E. and Granqvist, C.G., Proc. Natl. Acad. Sci. U. S. A. 96, 13611 (1999).Google Scholar
7. Duff, D. G., Curtis, A. C., Edwards, P. P., Jefferson, D. A., Johnson, B. F. G. and Logan, D. E., J. Chem. Soc. Chem. Commun. 1264 (1987).Google Scholar
8. Giorgio, S. and Urban, J., J. Phys. F: Met. Phys. 18, L147 (1988).Google Scholar
9. Jin, R. C., Cao, Y. W., Mirkin, C. A., Kelly, K. L., Schatz, G. C. and Zheng, J. G., Science 294, 1901 (2001).Google Scholar
10. Hong, B. H., Bae, S. C., Lee, C.W., Jeong, S. and Kim, K. S., Science 294, 348 (2001).Google Scholar
11. Nie, S. and Emory, S. R., Science 275, 1102 (1997).Google Scholar
12. Schultz, S., Smith, D. R., Mock, J. J. and Schultz, D. A., Proc. Natl. Acad. Sci. U. S. A. 97, 996 (2000).Google Scholar
13. Chen, S., Fan, Z. and Carroll, D. L., J. Phys. Chem. B 106, 10777 (2002).Google Scholar
14. Chen, S. and Carroll, D. L., Nano Lett. 2, 1003 (2002).Google Scholar
15. Malynych, S. and Chumanov, G., J. Am. Chem. Soc. 125, 2896 (2003).Google Scholar