Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T08:16:52.197Z Has data issue: false hasContentIssue false

Controlled Growth of Gold Nanorod Arrays from Polyethylenimine-coated Alumina Templates

Published online by Cambridge University Press:  01 February 2011

Jeong-Mi Moon
Affiliation:
[email protected], Purdue University, Chemistry, 560 Oval Drive, Box # 155, West Lafayette, IN, 47907, United States
Alexander Wei
Affiliation:
[email protected], Purdue University, Chemistry, 560 Oval Drive, Box # 155, West Lafayette, IN, 47907, United States
Get access

Abstract

Au nanorod arrays were grown by electrodeposition in Au-backed nanoporous alumina templates modified with polyethylenimine (PEI) as an adhesion layer. By varying the concentration and molecular weight of PEI, the length of nanorod arrays could be finely controlled. The local length distribution was extremely narrow with relative standard deviations on the order of 2% for rod lengths from 700 nm to 17 microns. The uniform growth rate appears to be determined by the adsorbed PEI matrix, which controls the growth kinetics of the grains comprising the nanorods. Templates coated with poly(acrylic acid) did not impart fine control in nanorod growth. The nanorods could also be thermally annealed within the template and released as monodisperse particles of uniform size.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Moroz, A., Phys. Rev. Lett. 83, 5274 (1999).Google Scholar
2 Zhang, W. Y., Lei, X. Y., Wang, Z. L., Zheng, D. G., Tam, W. Y., Chan, C. T., and Sheng, P., Phys. Rev. Lett. 84, 2853 (2000).Google Scholar
3 Maier, S. A., Kik, P. G., Atwater, H. A., Meltzer, S., Harel, E., Koel, B. E., and Requicha, A. A. G., Nature Mater. 2, 229 (2003).Google Scholar
4 Wurtz, G. A., Im, J. S., Gray, S. K., and Wiederrecht, G. P., J. Phys. Chem. B 107, 14191 (2003).Google Scholar
5 Paniou, N. -C. Jr and Osgood, R. M., Nano Lett. 4, 2427 (2004).Google Scholar
6 Wei, A., Kim, B., Sadtler, B., and Tripp, S. L., ChemPhysChem. 2, 743 (2001).Google Scholar
7 Tao, A., Kim, F., Hess, C., Goldberger, J., He, R., Sun, Y., Xia, Y., and Yang, P., Nano Lett. 3, 1229 (2003).Google Scholar
8 Félidj, N., Truong, S. L., Aubard, J., Lévi, G., Krenn, J. R., Hohenau, A., Leitner, A., and Aussenegg, F. R., J. Chem. Phys. 120, 7141 (2004).Google Scholar
9 Genov, D. A., Sarychev, A. K., Shalaev, V. M., and Wei, A., Nano Lett. 4, 153 (2004).Google Scholar
10 Wei, A., In Nanoparticles: Scaffolds and Building Blocks; Rotello, V. M., Ed.; Kluwer: New York, 2004; pp. 173200.Google Scholar
11 Kim, B., Tripp, S. L., and Wei, A., J. Am. Chem. Soc. 123, 7955 (2001).Google Scholar
12 Kim, B., Carignano, M. A., Tripp, S. L., and Wei, A., Langmuir 20, 9360 (2004).Google Scholar
13 Kim, B., Balasubramanian, R., Pérez-Segarra, W., Wei, A., Decker, B., and Mattay, J., Supramol. Chem. 17, 173 (2005).Google Scholar
14 Tessier, P. M., Velev, O. D., Kalambur, A. T., Rabolt, J. F., Lenhoff, A. M., and Kaler, E. W., J. Am. Chem. Soc. 122, 9554 (2000).Google Scholar
15 Graf, C. and Blaaderen, A. van, Langmuir 18, 524 (2002).Google Scholar
16 Nikoobakht, B., Wang, Z. L., and El-Sayed, M. A., J. Phys. Chem. B 104, 8635 (2000).Google Scholar
17 Kim, F., Kwan, S., Akana, J., and Yang, P., J. Am. Chem. Soc. 123, 4360 (2001).Google Scholar
18 Li, L. S., Walda, J., Manna, L., and Alivisatos, A. P., Nano Lett. 2, 557 (2002).Google Scholar
19 Li, L. S. and Alivisatos, A. P., Adv. Mater. 15, 408 (2003).Google Scholar
20 Orendorff, C. J., Hankins, P. L., and Murphy, C. J., Langmuir 21, 2022 (2005).Google Scholar
21 Moon, J. -M. and Wei, A., J. Phys. Chem. B 109, in press (2005) (jp054405n).Google Scholar
22 Martin, C. R., Science 266, 1961 (1994).Google Scholar
23 Masuda, H. and Fukuda, K., Science 268, 1466 (1995).Google Scholar
24 Masuda, H. and Satoh, M., Jpn. J. Appl. Phys. Part 2, 35, L126 (1996).Google Scholar
25 Schmitt, J., Mächtle, P., Eck, D., Möhwald, H., and Helm, C. A., Langmuir 15, 3256 (1999).Google Scholar
26 Sun, S., Anders, S., Thomson, T., Baglin, J. E. E., Toney, M. F., Hamann, H. F., Murray, C. B., and Terris, B. D., J. Phys. Chem. B 107, 5419 (2003).Google Scholar
27 Bon, P., Zhitomirsky, I., and Embury, J. D., Surf. Eng. 20, 5 (2004).Google Scholar
28 Sadtler, B. and Wei, A., Chem. Commun. 1604 (2002).Google Scholar
29 Wang, L., Sasaki, T., Ebina, Y., Kurashima, K., and Watanabe, M., Chem. Mater. 14, 4827 (2002).Google Scholar
30 Zhao, Y., Sadtler, B., Min, L., Hockerman, G. H., and Wei, A., Chem. Commun. 784(2004).Google Scholar
31 Foss, C. A. Jr., Hornyak, G. L., Stockert, J. A., and Martin, C. R., J. Phys. Chem. 98, 2963 (1994).Google Scholar
32 Zande, B. van der, Böhmer, M. R., Fokkink, L. G. J., and Schönenberger, C., Langmuir 16, 451 (2000).Google Scholar
33 El-Sayed, M. A., Acc. Chem. Res. 34, 257 (2001).Google Scholar