Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-14T09:11:55.925Z Has data issue: false hasContentIssue false

Controllable Synthesis of Different Bismuth Ferrites by a PVA Modified Hydrothermal Method and Photocatalytic Characterization

Published online by Cambridge University Press:  22 May 2013

Tong Tong
Affiliation:
School of materials science and engineering, Shanghai University, Shanghai 200072, P.R.China
Dengren Jin
Affiliation:
School of materials science and engineering, Shanghai University, Shanghai 200072, P.R.China
Jinrong Cheng*
Affiliation:
School of materials science and engineering, Shanghai University, Shanghai 200072, P.R.China
*
*corresponding author: [email protected]
Get access

Abstract

Bismuth ferrites crystallites were synthesized by a polyvinyl alcohol (PVA) modified hydrothermal method. X-ray diffraction (XRD) analysis indicated that the pure phase of Bi25FeO40, BiFeO3 and Bi2Fe4O9 were synthesized with initial Bi/Fe ratio of 1:1 at the temperature of 200°C for 24 h, using NaOH concentration of 2, 5 and 10 M, respectively. With addition of PVA, the individual Bi-Fe oxides could be existed in a more wide range of processing parameters. The phase evolution of bismuth ferrites in the process of hydrothermal reactions was discussed. Moreover, photocatalytic properties of the bismuth ferrites crystallites were explored. The results showed that they possessed band gaps of about 2.0 eV and performed good degradation effect at visible light region.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wang, J., Neaton, J.B., Zeng, H., Nagarajan, V., Ogale, S.B., Liu, B., Viehland, D., Schlom, D.G., Waghmare, U.V., Spaldin, N.A., Rabe, K.M., Wuttig, M., Ramesh, R., Science 299. 1719. (2003).CrossRefGoogle Scholar
Hur, N., Park, S., Sharma, P.A., Ahn, J.S., Guha, S., Cheong, S.W., Nature 429. 392. (2004).CrossRefGoogle Scholar
Valant, M., Suvorov, D., Chem. Mater. 14. 3471. (2002).CrossRefGoogle Scholar
Voll, D., Beran, A., Schneider, H., Phys. Chem. Miner. 33. 623. (2006).CrossRefGoogle Scholar
Ji, W., Yao, K., and Liang, Y. C., Adv. Mater. 22. 1763. (2010).CrossRefGoogle Scholar
Vogt, H., Buse, K., Hesse, H., Kratzig, E., Garcia, R.R., J. Appl. Phys. 90. 3167. (2001).CrossRefGoogle Scholar
Yao, W.F., Wang, H., Xu, X.H., Zhou, J.T., Yang, X.N., Zhang, Y., Shang, S.X., Wang, M., Chem. Phys. Lett. 377. 501. (2003).CrossRefGoogle Scholar
Liu, Z.K., Qi, Y.J., Lu, C.J., J. Mater. Sci.: Mater. Electron 21. 380. (2010).Google Scholar
Xu, J.H., Ke, H., Jia, D.C., Wang, W., Zhou, Y., J. Alloys Compd. 472. 473. (2009).CrossRefGoogle Scholar
Liu, T., Xu, Y.B., Feng, S.S., Zhao, J.Y., J. Am. Ceram. Soc. 94. 3060. (2011).CrossRefGoogle Scholar
Chen, C., Cheng, J.R., Yu, S.W., Che, L.J., Meng, Z.Y., J. Cryst. Growth 291. 135. (2006).CrossRefGoogle Scholar
Wang, Y.G., Xu, G., Ren, Z.H., Wei, X., Weng, W.J., Du, P.Y., Shen, G., Han, G.R., J. Am. Ceram. Soc. 90. 2615. (2007).CrossRefGoogle Scholar
Chen, X.Z., Qiu, Z.C., Zhou, J.P., Zhu, G.Q., Bian, X.B., Mater. Chem. Phys. 126. 560. (2011).CrossRefGoogle Scholar
Li, S., Lin, Y.H., Zhang, B.P., Wang, Y., Nan, C.W., J. Phys. Chem.C 114. 2903. (2010).CrossRefGoogle Scholar
Fei, L.F., Yuan, J.K., Hu, Y.M., Wu, C.Z., Wang, J.L., Cryst. Growth Des. 11. 1049. (2011).CrossRefGoogle Scholar