Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T17:38:06.860Z Has data issue: false hasContentIssue false

Control of Sizes and Optical Emission of Sige Quantum Dots Prepared on Ordered Mesoporous Silica Coated Si Wafer

Published online by Cambridge University Press:  10 February 2011

Y. S. Tang
Affiliation:
UCLA, Electrical Engineering Dept, Los Angeles, CA90095–1594, [email protected]
S. Cai
Affiliation:
UCLA, Electrical Engineering Dept, Los Angeles, CA90095–1594, [email protected]
D. Wang
Affiliation:
UCLA, Electrical Engineering Dept, Los Angeles, CA90095–1594, [email protected]
G. Jin
Affiliation:
UCLA, Electrical Engineering Dept, Los Angeles, CA90095–1594, [email protected]
J. Duan
Affiliation:
UCLA, Electrical Engineering Dept, Los Angeles, CA90095–1594, [email protected]
K. L. Wang
Affiliation:
UCLA, Electrical Engineering Dept, Los Angeles, CA90095–1594, [email protected]
H. M. Soyez
Affiliation:
UCLA, Materials Science Dept, Los Angeles, CA90095
B. S. Dunn
Affiliation:
UCLA, Materials Science Dept, Los Angeles, CA90095
Get access

Abstract

A new way of preparing wafer sized SiGe and Ge quantum dots at extremely low cost is presented. The results show that two different controlled nanometer sizes of the quantum dots can be formed simultaneously into two layers on the same wafer with good dot size uniformity. Our initial experiments on SiGe and Ge system suggest that it is possible to squeeze the SiGe dots for much improved optical emission. The advantages of this dot preparation method are its fully compatibility with the Sitechnology, its simplicity in dot preparation and extremely low cost.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Tang, Y.S. & Torres, C.M. Sotomayor, Mater. Res. Soc. Proc. Vol.405, 99108 (1996)Google Scholar
[2] Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C. and Beck, J.S., Nature 359, 710713(1992)Google Scholar
[3] Teichert, C., Lagally, M.G., Peticolas, L.J., Bean, J.C. and Tersoff, J., Phys. Rev. B, 53, 1634416349(1996)Google Scholar
[4] Tang, Y.S., Torres, C.M. Sotomayor, Whall, T.E., Parker, E.H.C., Presting, H. and Kibbel, H., J. Mater. Sci.: Materials for Electronics 6, 356361(1995)Google Scholar
[5] Tang, Y.S., Ni, W.X., Torres, C.M. Sotomayor and Hansson, G.V., Electron. Lett. 31, 13851386(1995)Google Scholar
[6] Tang, Y.S., Torres, C.M. Sotomayor,Ni, W.-X. and Hansson, G.V., Superlatt. Microstruct. 20, 505508(1996)Google Scholar
[7] Tang, Y.S., Hicks, S., Torres, C.M. Sotomayor,Ni, W.-X., Wilkinson, C.D.W. and Hansson, G.V., Proc. SPIE 3007, 170175(1997)Google Scholar
[8] Lu, Y., Ganguli, R., Drewien, C.A., Anderson, M.T., Brinker, C.J., Gong, W.L., Guo, Y.X., Soyez, H., Dunn, B., Huang, M.H. and Zink, J.I., Nature 389, 364368(1997)Google Scholar
[9] Wachter, M., Schaffler, F., Herzog, H.J., Thonke, K. and Sauer, R., Appl. Phys. Lett. 63, 376378(1993)Google Scholar
[10] Tang, Y.S., Cai, S., Duan, J., Wang, K.L., Soyez, H.M. and Dunn, B.S., Appl. Phys. Lett. 71, 24482450(1997)Google Scholar