Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T02:25:49.342Z Has data issue: false hasContentIssue false

Control of Oxygen Content in Heavily Sb-Doped CZ Si Crystal by Adjusting Ambient Pressure

Published online by Cambridge University Press:  26 February 2011

Koji Izunome
Affiliation:
Kimura Metamelt Project, ERATO, JRDC, 5-9-9 Tokodai, Tsukuba 300–26
Xinming Huang
Affiliation:
Kimura Metamelt Project, ERATO, JRDC, 5-9-9 Tokodai, Tsukuba 300–26
Shiniji Togawa
Affiliation:
Kimura Metamelt Project, ERATO, JRDC, 5-9-9 Tokodai, Tsukuba 300–26
Kazutaka Terashima
Affiliation:
Kimura Metamelt Project, ERATO, JRDC, 5-9-9 Tokodai, Tsukuba 300–26
Shigeyuki Kimura
Affiliation:
Kimura Metamelt Project, ERATO, JRDC, 5-9-9 Tokodai, Tsukuba 300–26
Get access

Abstract

In Czochralski-grown (CZ) silicon single crystals, antimony (Sb) doping decreases the oxygen concentration by enhancing oxygen evaporation from the melt surface. In this study, Ar ambient pressures of around 100 Torr over the silicon melt were found to suppress evaporation of oxide species. To clarify the effect of the growth chamber ambient pressure on oxygen concentration, heavily Sb-doped CZ silicon crystals were grown under Ar pressures of 30, 60, and 100 Torr. Increasing Ar pressure increases the oxygen and Sb concentrations at the melt surface. The oxygen concentration under an Ar pressure of 100 Torr was 1.2 times higher that under 30 Torr when the solidified fractions are 0.5 or larger. The oxygen evaporation rate is controllable by gas phase transport of Sb2O at high Ar pressures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Barraclough, K. G., Series, R. W., Kemp, D. S. and Rae, G. J., VII Int. Conf. Crystal growth, Stuttgart, F. R. Germany, ICCG-7, Sept., (1983) SY 4/3.Google Scholar
[2] Huang, X., Terashima, K., Sasaki, H., Tokizaki and S. Kimura, E., Jpn. J. Appl. Phys. 32 (1996) 3671.Google Scholar
[3] Huang, X., Terashima, K., Sasaki, H., Tokizaki, E., Anzai and S. Kimura, Y., Jpn. J. Appl. Phys. 33 (1993) 1717.Google Scholar
[4] Huang, X., Terashima, K., Izunome, K. and Kimura, S., in print to J. Crystal Growth.Google Scholar
[5] Huang, X., Terashima, K., Tokizaki, E., Sasaki, H. and Kimura, S., Jpn. J. Appl. Phys. 33 (1994) 3305.Google Scholar
[6] Harada, H., Itoh, T., Ozawa, N. and Abe, T. : VLSI Science and Technology 1985, eds. Bullis, W. N. and Byoydo, S. (Electrochem. Soc, Pennington, 1985) Softbound Proc. Series, PV 85–5, p. 526.Google Scholar
[7] Huang, X., Terashima, K., Izunome, K. and Kimura, S., Jpn. J. Appl. Phys. 33 (1994) L902.Google Scholar
[8] Hirata and K. Hoshikawa, H., J. Japan Assoc. Crystal Growth, 15 (1988) 207.Google Scholar
[9] Hoshikawa, K., Hirata, H., Nakanishi, H. and Ikuta, K., Semiconductor Silicon 1981, eds. Huff, H. R., Kriegler, R. J., and Takeishi, Y. (Electrochem. Soc., Pennington, 1981) p. 101.Google Scholar
[10] Kodera, H., Jpn.J. Appl. Phys. 2 (1963) 212.Google Scholar
[11] Kaiserand, W. Breslin, J., J. Appl. Phys. 29 (1958) 1292.Google Scholar
[12] Wagner, C., J. Appl. Phys. 29 (1958) 1295.Google Scholar