Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T07:44:13.104Z Has data issue: false hasContentIssue false

Control of Location and Carrier-Interaction of Erbium Using Erbium-Doped Si/SiO2 Superlattice

Published online by Cambridge University Press:  10 February 2011

Hak-Seung Han
Affiliation:
Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), 373–l˜Kusung-dong, Yusung-gu, Taejon, Korea
Won-Hee Lee
Affiliation:
Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), 373–l˜Kusung-dong, Yusung-gu, Taejon, Korea
Jung H. Shin
Affiliation:
Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), 373–l˜Kusung-dong, Yusung-gu, Taejon, Korea
Get access

Abstract

The effect of controlling the interaction between the erbium atoms and the carriers of the host matrix is investigated using erbium doped Si/SiO2 superlattices. Based on the previous finding that controlling the location of the erbium atoms by doping only the SiO2 layers improves both the Er3+ photoluminescence intensities and the temperature quenching of the Er3+ luminescence, we identify controlling the interaction between erbium atoms and the carriers in the Si layer to be the key point. We demonstrate that by further isolating the erbium atoms from the Si layers by depositing thin buffer layers of pure SiO2 improves the Er3+ photoluminescence by several orders of magnitude while still allowing efficient excitation by carriers to dominate. Finally, we demonstrate that efficient waveguides can be fabricated using such erbium doped Si/SiO2 superlattices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kik, P. G., Dood, M. J. A. de, Kikoin, K., and Polman, A., Appl. Phys. Lett. 70 1721 (1997)Google Scholar
2. Favennec, P. N., L'Haridon, H., Moutonnet, D., Salvi, M., Ganneau, M., Mat. Res. Soc. Symp.Proc. 301, 181(1993).Google Scholar
3. Shin, J. H., Hoven, G. N. van den, and Polman, A., Appl. Phys. Lett. 66 2379 (1995)Google Scholar
4. Wu, X., Hömmerich, U., Namavar, F., and Cremins-Costa, A. M. Appl. Phys. Lett. 69 1903 (1996)Google Scholar
5. Kenyon, A. J., Trwoga, P. F., Federighi, M. and Pitt., C. W., J. Phys.: Condens. Matter 6 L319 (1994)Google Scholar
6. Fujii, M., Yoshida, M., Kanzawa, Y., Hayashi, S., and Yamanoto, K., Appl. Phys. Lett. 71 1198 (1997)Google Scholar
7. Shin, J. H., Kim, M-J., Seo, S-Y., and Lee, C., Appl. Phys. Lett. 72 1092 (1998)Google Scholar
8. Shin, J. H., Lee, W-H, and Han, H-S Appl. Phys. Lett. 74 1573 (1999)Google Scholar
9. Priolo, F., Franzò, G., Coffa, S., and Camera, A., Phys. Rev. B 57 4443 (1998)Google Scholar
10. Palm, J., Gan, F., Zheng, B., Michel, J., and Kimerling, L. C., Phys. Rev. B 54 17603 (1996)Google Scholar
11 Okamoto, S. and Kanemitsu, Y., Phys. Rev. B. 54 16421 (1996)Google Scholar
12 Priolo, F., G. Franz6, Coffa, S., and Camera, A., Phys. Rev. B 57 4443 (1998)Google Scholar