Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-05T04:03:27.205Z Has data issue: false hasContentIssue false

Control of Current Reversal and Separation of Particles in Inertia Ratchets

Published online by Cambridge University Press:  01 February 2011

F. Family
Affiliation:
Department of Physics, Emory University, Atlanta, GA 30322
H.A. Larrondo
Affiliation:
Depto. de Física, Facultad de Ingeniería, Universidad Nacional de Mar del Plata, Av. J.B. Justo 4302, 7600 Mar del Plata, Argentina
C.M. Arizmendi
Affiliation:
Department of Physics, Emory University, Atlanta, GA 30322 Depto. de Física, Facultad de Ingeniería, Universidad Nacional de Mar del Plata, Av. J.B. Justo 4302, 7600 Mar del Plata, Argentina
Get access

Abstract

We have studied the deterministic dynamics of underdamped single and multiparticle ratchets associated with current reversal, as a function of both the amplitude and the frequency of an external driving force. We show that control of current reversals in deterministic inertia ratchets is possible as a consequence of a locking process associated with different mean velocity attractors. Control processes employing small perturbations on the frequency and the amplitude of the external force may be designed in view of the intermixed fractal nature of the domains of attraction of the mean velocity attractors. The range where each control parameter is capable of reversing the current is determined. Quenched noise has significant effect on the basins of attraction. In particular, with increasing disorder the direction of a packet of particles can be reversed, leading to disappearance or weakening of the negative velocity attractor. The influence of the mass of the particles is also considered in order to design control techniques capable of separating particles of different masses.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Reimann, P., Physics Reports 361, 57265 (2002).Google Scholar
[2] Howard, J., Mechanics of Motor Proteins and the Cytoskeleton (Sinauer Associates, Inc., 2000).Google Scholar
[3] Derényi, I. and Astumian, R. D., Phys. Rev. E 58, 7781 (1998);Google Scholar
Gorre-Talini, L., Spatz, J.P., and Silberzan, P., Chaos 8, 650 (1998);Google Scholar
Ertas, D., Phys. Rev. Lett. 80, 1548 (1998);Google Scholar
Duke, T. A. J. and Austin, R. H., Phys. Rev. Lett. 80, 1552 (1998).Google Scholar
[4] Derényi, I., Lee, Choongseop, and Barabási, Albert-László, Phys. Rev. Lett. 80, 851 (1998).Google Scholar
[5] Rousselet, J., Salome, L., Adjari, A., and Prost, J., Nature (London 370, 446 (1994);Google Scholar
Faucheux, L.P., Bourdieu, L.S., Kaplan, P.D., and Libchaber, A.J., Phys. Rev. Lett. 74, 1504 (1995).Google Scholar
[6] Jung, P., Kissner, J.G., and Hänggi, P., Phys. Rev. Lett. 76, 3436 (1996).Google Scholar
[7] Mateos, J. L., Phys. Rev. Lett. 84, 258 (2000)Google Scholar
[8] Grebogi, C., Ott, E., Yorke, J. A., Science 238 585 (1987)Google Scholar
[9] Barbi, M., Salerno, M., Phys. Rev. E 63, 066212–1 (2001).Google Scholar
[10] Larrondo, H. A., Family, F., Arizmendi, C. M., Physica A 303, 78 (2002).Google Scholar
[11] Larrondo, H. A., Arizmendi, C.M. and Family, F., Physica A 320C, 119 (2003).Google Scholar
[12] Popescu, M. N., Arizmendi, C. M., Salas-Brito, A. L. and Family, F., Phys. Rev. Lett. 85, 33213324 (2000)Google Scholar
[13] Arizmendi, C. M., Family, F. and Salas-Brito, A. L., Phys. Rev. E 63 061104 (2001).Google Scholar
[14] Barbi, M. and Salerno, M., Phys. Rev. E 62, 19881994, (2000).Google Scholar
[15] Press, W. H., Teikolsky, S. A., Vetterling, W. T., and Flannery, B. P., Numerical Recipes in C, (Cambridge University Press, Cambridge, 1995), pp. 704716.Google Scholar