Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T22:40:52.695Z Has data issue: false hasContentIssue false

Control and Impact of Processing Ambient During Rapid Thermal Silicidation

Published online by Cambridge University Press:  10 February 2011

K. Maex
Affiliation:
also at INSYS, K.U. Leuven, Belgium
E. Kondoh
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium
A. Lauwers
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium
A. Steegen
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium
M. De Potter
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium
P. Besser
Affiliation:
affiliate researcher at IMEC from AMD, Sunnnyvale
J. Proost
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium
Get access

Abstract

The introduction of rapid thermal processing for silicide formation has triggered a lot of research to temperature uniformity and reproducibility in RTP systems. In addition to the temperature, the ambient control is to be taken into account. Although gasses are specified to a low level of contaminants, the RTP step needs to be optimised for optimal contaminant reduction. Besides, the process wafer itself is a source of contamination.

In this paper an overview will be given of the role of RTP ambient on the silicidation processes. The effect of the wafer on ambient purity will be highlighted. It will be shown that the use of a reactive capping layer during silicidation represents an adequate solution for both sources of contamination.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Maex, K., Mat. Sci. and Eng. (1993) 53151 Google Scholar
2. “Advances in Rapid Thermal and Integrated Processing”, Edt. Roozeboom, F., (Kluwer Academic Pub., Dordrecht, Netherlands, 1996)Google Scholar
3. Wang, Q. F., Lauwers, A., Jonckx, F., de Potter, M., Chen, C.-C. and Maex, K., Mat. Res. Soc. Proc., Vol.402, (1996), 221 Google Scholar
4. Norstrom, H., Maex, K., Romano-Rodriguez, A., Vanhellemont, J. and Van den, L hove Microelectronic Engineering 14 (1991) 327 Google Scholar
5. Proost, J., Kondoh, E., Vereecke, G., Heyns, M. and Maex, K., J. Vac. Sci. Technol., in pressGoogle Scholar
6. Kondoh, E., Vereecke, G., Heyns, M. M., Maex, K., Gutt, T. and Nényei, Z., Mat. Res. Soc. Proc., Vol.525, (1998)Google Scholar
7. Wang, Q.F., Maex, K., Kubicek, S., Jonckheere, R., Kerkwijk, B., Verbeeck, R., Biesemans, S. and De Meyer, K., Symp. on VLSI Techn., Kyoto, (1995), 17 Google Scholar
8. A, Lauwers, Besser, P., de Potter, M., Kondoh, E., Roelandts, N., Steegen, A., Stucchi, M. and Maex, K., IEEE Proc. International Interconnect Technology Conference (IITC), (1998), to be publishedGoogle Scholar
9. Besser, P., Lauwers, A., Roelandts, N., Maex, K., Blum, W., Alvis, R., Stucchi, M., de Potter, M., Mat. Res. Soc. Proc., Vol.514, (1998)Google Scholar