Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T01:46:50.290Z Has data issue: false hasContentIssue false

Contribution of Electronic Energy Deposition to the Atomic Cascade Damage in Nanocrystals

Published online by Cambridge University Press:  01 February 2011

Marie Backman
Affiliation:
[email protected], Institute of Physics and Department of Physics, University of Helsinki, Finland
Flyura Djurabekova
Affiliation:
[email protected], Institute of Physics and Department of Physics, University of Helsinki, Finland
Olli H Pakarinen
Affiliation:
[email protected], Institute of Physics and Department of Physics, University of Helsinki, Finland
Kai Nordlund
Affiliation:
[email protected], Institute of Physics and Department of Physics, University of Helsinki, Finland
Marcel Toulemonde
Affiliation:
[email protected], Centre Interdisciplinaire de Recherche sur les Ions, les Matériaux et la Photonique (CIMAP), Caen, France
Get access

Abstract

Using Molecular Dynamics we study the role of electronic excitations in the radiation damage caused by an energetic ion in Ge nanocrystals embedded in amorphous SiO2. The electronic effects are included as heating along the ion path modeled by the thermal spike model. In an ion energy regime where the electronic stopping power is larger than the nuclear, we find that the electronic effects enhance the defect creation significantly. We conclude that the electronic excitations below the track production threshold due to an energetic ion cannot be disregarded as a source of radiation damage.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Trautmann, C. Schwartz, K. and Geiss, O. J. Appl. Phys. 83, 3560 (1998).Google Scholar
2 Meftah, A. et al. , Nucl. Instrum. Meth. Phys. Res. B237, 563 (2005).Google Scholar
3 Itoh, N. Duffy, D. M. Khakshouri, S. and Stoneham, A. M. J. Phys.: Condens. Matter 21, 474205 (2009).Google Scholar
4 Jakas, M. M. and Harrison, D. E. Jr. , Phys. Rev. B30, 3573 (1984).Google Scholar
5 Jakas, M. M. and Harrison, D. E. Jr. , Phys. Rev. B32, 2752 (1985).Google Scholar
6 Duvenbeck, A. Weidtmann, B. Weingart, O. and Wucher, A. Phys. Rev. B77, 245444 (2008).Google Scholar
7 Sandoval, L. and Urbassek, H. M. Phys. Rev. B79, 144115 (2009).Google Scholar
8 Rutherford, A. M. and Duffy, D. M. J. Phys.: Condens. Matter 19, 496201 (2007).Google Scholar
9 Björkas, C. and Nordlund, K. Nucl. Instr. Meth. Phys. Res. B267, 1830 (2009).Google Scholar
10 Toulemonde, M. et al. , Nucl. Instrum. Meth. Res. Phys. B178, 331 (2001).Google Scholar
11 Miekes, H. D. Assman, W. Grüner, F., Kucal, H. and Toulemonde, Z. G. W. M. Phys. Rev. B67, 155414 (2003).Google Scholar
12 Kishimoto, N. Okubo, N. Plaksin, O. A. and Takeda, Y. J. Nucl. Mater. 329333, 1048 (2004).Google Scholar
13 Backman, M. Djurabekova, F. Pakarinen, O. H. Nordlund, K. Araujo, L. L. and Ridgway, M. C. Phys. Rev. B80, 144109 (2009).Google Scholar
14 Komarov, F. F. Gaiduk, P. I. Vlasukova, L. A. Didyk, A. J. and Yuvchenko, V. N. Vacuum 70, 75 (2003).Google Scholar
15 Colder, A. Marty, O. Canut, B. Levalois, M. and Marie, P. Nucl. Instrum. Meth. Phys. Res. B174, 491 (2001).Google Scholar
16 Furuno, S. Otsu, H. Hojou, K. and Izui, K. Nucl. Instrum. Meth. Phys. Res. B107, 223 (1996).Google Scholar
17 Djurabekova, F. and Nordlund, K. Phys. Rev. B77, 115325 (2008).Google Scholar
18 Watanabe, T. Yamasaki, D. Tatsumura, K. and Ohdomari, I. Appl. Surf. Sci. 234, 207 (2004).Google Scholar
19 Samela, J. Nordlund, K. Popok, V. N. and Campbell, E. E. B. Phys. Rev. B77, 075309 (2008).Google Scholar
20 Berendsen, H. J. C. Postma, J. P. M. Gunsteren, W. F. van, DiNola, A. and Haak, J. R. J. Chem. Phys. 81, (1984), ber84.pdf.Google Scholar
21 Nordlund, K. Comput. Mater. Sci. 3, 448 (1995).Google Scholar
22A presentation of the MDRANGE computer code is available on the World Wide Web in http://beam.acclab.helsinki.fi/˜knordlun/mdh/mdh program.html .Google Scholar
23 Toulemonde, M. Costantini, J. M. Dufour, C. Meftah, A. Paumier, E. and Studer, F. Nucl. Instrum. Meth. Phys. Res. B116, 37 (1996).Google Scholar
24 Klaumünzer, S., Nucl. Instrum. Meth. Phys. Res. B225, 136 (2004).Google Scholar
25 Kluth, P. et al. , Phys. Rev. Lett. 101, 175503 (2008).Google Scholar
26 Nordlund, K. and Averback, R. S. Phys. Rev. B56, 2421 (1997).Google Scholar