Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T06:57:50.315Z Has data issue: false hasContentIssue false

Contrasting Structural Behavior in the Aurivillius Phase Ferroelectrics Bi4Ti3O12, BaBi4Ti4O15 and Ba2Bi4Ti5O18

Published online by Cambridge University Press:  11 February 2011

Philip Lightfoot
Affiliation:
School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK; e-mail [email protected]
Alan Snedden
Affiliation:
School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK; e-mail [email protected]
Susan M. Blake
Affiliation:
School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK; e-mail [email protected]
Kevin S. Knight
Affiliation:
ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX, UK.
Get access

Abstract

The crystal structures of the Aurivillius phase ferroelectrics Bi4Ti3O12, BaBi4Ti4O15 and Ba2Bi4Ti5O18, containing perovskite-like layers consisting of three, four and five adjacent TiO6 octahedra, respectively, have been analysed using high-resolution powder neutron diffraction data. At 2K the structure of Bi4Ti3O12 can be successfully modelled in the orthorhombic space group B2cb, with no evidence of the monoclinic distortion in the ferroelectric phase suggested by previous single crystal studies. At 298K BaBi4Ti4O15 shows a subtle orthorhombic distortion, but without the octahedral tilting seen in related ferroelectric phases, and is refined in space group F2mm. At 298 K Ba2Bi4Ti5O18 adopts a tetragonal polar phase (I4mm), thus displaying a third type of polar distortion within this family. It is suggested that these differences arise from a ‘tolerance factor’ type mechanism whereby the increasing content of the large Ba2+ cation causes a shift from underbonding at the perovskite A-site to underbonding at the perovskite B-site resulting in a change in the mechanism of ferroelectricity from A-site displacements to B-site displacements, akin to the mechanism in BaTiO3.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aurivillius, B., Ark. Kemi, 1, 499 (1949).Google Scholar
Subbarao, E. C., J. Phys. Chem. Solids, 23, 665 (1962).Google Scholar
3. de Araujo, C. A. P., Cuchiaro, J. D., McMillan, L. D., Scott, M. and Scott, J. F., Nature (London), 374, 627 (1995).Google Scholar
4. Park, B. H., Kang, B. S., Bu, S. D., Noh, T. W., Lee, J. and Jo, W., Nature (London), 401, 682 (1999).Google Scholar
5. Newnham, R. E., Wolfe, R. W. and Dorrian, J. F., Mater. Res. Bull., 6, 1029 (1971).Google Scholar
6. Blake, S. M., Falconer, M. J., McCreedy, M. and Lightfoot, P., J. Mater. Chem., 7, 1609 (1997).Google Scholar
7. Hervoches, C. H., Snedden, A., Riggs, R., Kilcoyne, S. H., Manuel, P. and Lightfoot, P., J. Solid State Chem., 164, 280 (2002).Google Scholar
8. Hervoches, C. H. and Lightfoot, P., Chem. Mater., 11, 3359 (1999).Google Scholar
9. Lightfoot, P. and Hervoches, C. H., Proceedings of CIMTEC 10th International Ceramics Congress, Florence, Italy, July 2002.Google Scholar
10. Cummins, S. E. and Cross, L. E., J. Appl. Phys., 39, 2268 (1968).Google Scholar
11. Rae, A. D., Thompson, J. G., Withers, R. L. and Willis, A. C., Acta Cryst., B46, 474 (1990).Google Scholar
12. Hervoches, C. H. and Lightfoot, P., J. Solid State Chem., 153, 66 (2000).Google Scholar
13. Hervoches, C. H., Irvine, J. T. S. and Lightfoot, P., Phys. Rev. B., 64, 100102(R) (2001).Google Scholar
14. Snedden, A., Hervoches, C. H. and Lightfoot, P., Phys. Rev. B., in press,Google Scholar
15. Larson, A. C. and Von Dreele, R. B., Los Alamos National Lab., Report No. LA-UR-86–748 (1987).Google Scholar
16. Dorrian, J. F., Newnham, R. E. and Smith, D. K., Ferroelectrics, 3, 17 (1971).Google Scholar
17. Wright, A. J. and Greaves, C., J. Mater. Chem., 6, 1823 (1996).Google Scholar
18. Fuentes, M. E., Mehta, A., Lascano, L., Camacho, H., Chianelli, R., Fernandez, J. F. and Fuentes, L., Ferroelectrics, 269, 159 (2002).Google Scholar
19. Nalini, G. and Row, T. N. G., Bull. Mater. Sci., 25, 275 (2002).Google Scholar
20. Irie, H., Miyayama, M. and Kudo, T., J. Appl. Phys., 90, 4089 (2001).Google Scholar
21. Subbarao, E. C., J. Am. Ceram. Soc., 45, 166 (1962).Google Scholar
22. Akopjan, A. V., Serov, T. V., Dolgikh, V. A., Ardaschnikova, E. I. and Lightfoot, P., J. Mater. Chem., 12, 1490 (2002).Google Scholar
23. Suarez, D. Y., Reaney, I. M. and Lee, W. E., J. Mater. Res., 16, 3139 (2001).Google Scholar