Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-09T09:38:55.538Z Has data issue: false hasContentIssue false

Contact Resistance of InGaN/GaN Light Emitting Diodes Grown on the Production Model Multi-Wafer Movpe Reactor

Published online by Cambridge University Press:  15 February 2011

R.W. Chuang
Affiliation:
AIXTRON Inc., 1670 Barclay Blvd., Buffalo Grove, IL, 60089, USA
A.Q. Zou
Affiliation:
AIXTRON Inc., 1670 Barclay Blvd., Buffalo Grove, IL, 60089, USA
H.P. Lee
Affiliation:
AIXTRON Inc., 1670 Barclay Blvd., Buffalo Grove, IL, 60089, USA
Z.J. Dong
Affiliation:
Alpha Photonics Inc., 2019 Saturn Street, Monterey Park, CA 91754
F.F. Xiong
Affiliation:
Alpha Photonics Inc., 2019 Saturn Street, Monterey Park, CA 91754
R. Shih
Affiliation:
Alpha Photonics Inc., 2019 Saturn Street, Monterey Park, CA 91754
M. Bremser
Affiliation:
AIXTRON Inc., 1670 Barclay Blvd., Buffalo Grove, IL, 60089 USA
H. Juergensen
Affiliation:
AIXTRON AG, 15-17 Kackertstrasse, Aachen D-52072, Germany
Get access

Abstract

We report both the device fabrication and characterization of InGaN/GaN single quantum well LEDs grown on sapphire substrates using multi-wafer MOVPE reactor. To improve current spreading of the LEDs, a self-aligned process is developed to define LED mesa that is coated with a thin, semi-transparent Ni/Au (40 Å/40 Å) layer. A detailed study on the ohmic contact resistance of Ni/Cr/Au on p-GaN versus annealing temperatures is carried out on transmission line test structures. It was found that the annealing temperatures between 300 to 500°C yield the lowest specific contact resistance rc (0.016 Ω-cm2 at a current density of 66.7 mA/cm). Based on the extracted rc from the transmission line measurement, we estimate that the contact resistance of the p-type GaN accounts for ∼ 88% of the total series resistance of the LED.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, S., Iwasa, N., Senoh, M., and Mukai, T., Jpn J. Appl. Phys., 31, 1258, (1992).Google Scholar
2. Nakamura, S., Mukai, T., and Senoh, M., Appl. Phys. Lett., 64, 1678, (1994).Google Scholar
3. Nakamura, S., Senoh, M., Nagahama, S., Naruhito, N., Yamada, T., Matsuchita, T., Sugimoto, Y., and Kiyoku, H., Appl. Phys. Lett., 69, 1477, (1996).Google Scholar
4. Handbook on Optical Constants of Solids Vol. 1, II, and III, edited by Palik, D., Academic Press, (1998).Google Scholar
5. Murrmann, H. and Widmann, D., IEEE Tran. Electron Device., 16, 10221024, (1969).Google Scholar
6. Beccard, R., Schoen, O., Schineller, B., Schmitz, D., Heuken, M., and Juergensen, H., Mat. Res. Soc. Symp. Proc., Vol. 482, 155, (1998).Google Scholar
7. Lester, L.F., Brown, J.M., Ramer, J.C., Zhang, L., Hersee, S.D., and Zolper, J.C., Appl. Phys Lett., 69, 2737, (1996).Google Scholar
8. Zolper, J.C., Rieger, D.J., Baca, A.G., Pearton, S.J., Lee, J.W., and Stall, R.A., Appl. Phys. Lett., 69, 538, (1996).Google Scholar
9. Venugopalan, H.S., Mohney, S.E., Luther, B.P., Wolter, S.D., and Redwing, J.M., J. Appl. Phys., 82(2), 15 July, 650, (1997).Google Scholar
10. Sheu, J.K., Su, Y.K., Chi, G.C., Chen, W.C., Chen, C.Y., Huang, C.N., Hong, J.M., Yu, Y.C., Wang, C.W., and Lin, E.K., J. Appl. Phys., 83(6), 15 March, 3172, (1998).Google Scholar
11. Mori, T., Kozawa, T., Ohwaki, T., Taga, Y., Nagai, S., Yamasaki, S., Asami, S., Shibata, N., and Koike, M., Appl. Phys. Lett. 69, 3537, (1996).Google Scholar
12. Ishikawa, H., Kobayaxhi, S., Kiode, Y., Yamasaki, S., Nagai, S., Umesaki, J., and Koike, M., Murakami, M., J. Appl. Phys. 81, 1315 (1997).Google Scholar
13. Kim, J.K., Lee, J.L., Lee, J.W., Shin, H.E., Park, Y.J., and Kim, T., Appl. Phys. Lett. 73, 2953, (1998).Google Scholar