Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T02:21:47.212Z Has data issue: false hasContentIssue false

Conformality and Composition of Films Deposited at Low Pressures

Published online by Cambridge University Press:  15 February 2011

Timothy S. Cale*
Affiliation:
Center for Solid State Electronics Research, Arizona State University, Tempe, AZ 85287-6206.
Get access

Abstract

Conformality limitations and film composition variations inside features for films deposited at low pressures are explained using examples of studies which combine transport and reaction simulations of deposition processes with experimental work. In the first example, the use of film profile information to decide between two kinetic models for the low pressure chemical vapor deposition (LPCVD) of SiO2 from tetraethoxysilane (TEOS) is described. In the second example, a simple but useful model for the plasma enhanced chemical vapor deposition (PECVD) of silicon dioxide from TEOS/oxygen mixtures (PETEOS) is discussed. In the third example, composition profiles in sputter deposited (PVD) Ti-W films are explained in terms of titanium re-emission. Combined simulation and experimental studies of film profiles and composition profiles in features is a valuable tool in efforts to arrive at useful kinetic and transport models.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Raupp, G. B. and Cale, T. S., in Gas Phase and Surface Chemistry in Electronic Materials Processing, Mountziaris, T. J., Paz-Pujalt, G. R., Smith, F. T. J. and Westmorland, P. R., eds., MRS Symp. Proc., Vol. 334, MRS, 1994, p. 471. Google Scholar
2 Cale, T. S., Raupp, G. B., Chaara, M. B. and Shemansky, F. A., Thin Solid Films 220, 66 (1992).Google Scholar
3 Zirkle, T. E., Wilson, S. R., Sundaram, S., Cale, T. S. and Raupp, G. B., J. Vac. Sci. Tech. All , 905 (1993).Google Scholar
4 Rogers, B. R. and Cale, T. S., Thin Solid Films 236, 334 (1993).Google Scholar
5 Rogers, B. R., Tracy, C. J. and Cale, T. S., J. Vac. Sci. Tech. B 12, 2980 (1994).Google Scholar
6 Raupp, G. B., Cale, T. S., Jain, M. K., Srinivas, D. and Rogers, B. R., Thin Solid Films 193, 234 (1990).Google Scholar
7 Dew, S. K., Smy, T. and Brett, M. J., J. Vac. Sci. Tech. B 10, 618 (1992).Google Scholar
8 Evans, J. W. and Bartelt, M. C., J. Vac. Sci. Tech. B 12, 1800 (1994).Google Scholar
9 Cale, T. S. and Raupp, G. B., J. Vac. Sci. Tech. B 8, 649 (1990).Google Scholar
10 Cale, T. S. and Raupp, G. B., J. Vac. Sci. Tech. B 8, 1242 (1990).Google Scholar
11 Cale, T. S., Raupp, G. B. and Gandy, T. H., J. Vac. Sci. Tech. A 10, 1128 (1992).Google Scholar
12 IslamRaja, M. M., Capelli, M. A., McVittie, J. P. and Saraswat, K. C., J. Appl. Phys. 70, 7137 (1991).Google Scholar
13 Singh, V. K., Shaqfeh, E. S. G. and McVittie, J. P., J. Vac. Sci. Tech. B 10, 1091 (1992).Google Scholar
14 Hsieh, J. J. and Joshi, R. V., in Advanced Metallization of ULSI Applications, Rana, V. V. S., Joshi, R. V. and Ohdomari, I., eds., MRS, 1992, p.77. Google Scholar
15EVOLVE is a low pressure deposition process simulator developed by T. S. Cale with funding from the Semiconductor Research Corporation, the National Science Foundation and Motorola, Inc. Version 4.0 released September, 1994.Google Scholar
16 Ross, D. S., J. Electrochem. Soc. 135, 1260 (1988).Google Scholar
17Computational Modeling in Semiconductor Processing, M. Meyyappan, ed., Artech, 1995.Google Scholar
18 Micorelectronics Processing: Chemical Engineering Aspects, Hess, D. and Jensen, K. F., eds., Advances in Chemistry Series 221, ACS, 1989 Google Scholar
19 Hasper, A., Holleman, J., Middelhoeck, J., Kleijn, C. R. and Hoogendoorn, C. J., J. Electrochem. Soc. 138, 1728 (1991).Google Scholar
20 Cale, T. S., Park, J.-H., Gandy, T. H., Raupp, G. B. and Jain, M. K., Chem. Eng. Comm. 119, 197 (1993).Google Scholar
21 Shemansky, F. A., Ph.D. Dissertation, Arizona State University, 1991.Google Scholar
22 Raupp, G. B., Shemansky, F. A. and Cale, T. S., J. Vac. Sci. Tech. B 10, 2422 (1992).Google Scholar
23 Desu, S., J. Am. Ceramic Soc. 72, 1615 (1989).Google Scholar
24 Adams, A. C. and Capio, C. D., J. Electrochem. Soc. 126, 1042 (1979).Google Scholar
25 Schlote, J., Schroder, K.-W. and Drescher, K., J. Electrochem. Soc. 138, 2393 (1991).Google Scholar
26 Soave, R., Ganguli, S., Gill, W., Mayer, J. and Shacham-Diamand, Y., manuscript submitted.Google Scholar
27 IslamRaja, M. M., Chang, C., McVittie, J. P., Cappelli, M. A. and Saraswat, K. C., J. Vac. Sci. Tech. B 11, 720 (1993).Google Scholar
28 Bartram, M. E. and Moffat, H. K., Accepted for publication in the Proceedings of the 185-th Meeting of The Electrochemical Society.Google Scholar
29Private communication from Dr. Pauline Ho, Sandia National Laboratories.Google Scholar
30 Aydil, E. S. and Economou, D. J., J. Electrochem. Soc. 140, 1471 (1993).Google Scholar
31 Graves, D. B., Jap. J. Appl. Phys. , Part 1, R 32(6B), 2999 (1993).Google Scholar
32 Choi, S. J. and Kushner, M. J., IEEE Trans. on Plasma Sci. , 22(2), 138 (1994).Google Scholar
33 Raupp, G. B., Cale, T. S. and Hey, H. P. W., J. Vac. Sci. Tech. B 10(1), 37(1992).Google Scholar
34 Cale, T. S., Raupp, G. B. and Gandy, T. H., J. Vac . Sci. Tech. A 10(4), 1128 (1992)Google Scholar
35 Ibbotson, D. E., Hsieh, J. J., Flamm, D. L., ,and Mucha, J. A., Proc. SPIE 1037, 130 (1988).Google Scholar
36 Cale, T. S., J. Vac., Sci. Tech. B 9(5), 2551 (1991).Google Scholar
37 Myers, F. R., Peters, M. W., Ramaswami, M. and Cale, T. S., Thin Solid Films 253, 522 (1994).Google Scholar
38 Greaves, J. C. and Linnett, J. W., Trans. Faraday Soc. 55, 1355 (1959).Google Scholar
39 Zirkle, T. E., Drowley, C., Cowden, W. G. and Cale, T. S., Thin Solid Films 220, 45 (1992).Google Scholar
40 Kersch, A., Morokoff, W. and Werner, Chr., J. Appl. Phys. 75, 2278 (1994).Google Scholar
41 Dew, S. K., Liu, D., Brett, M. J. and Smy, T., J. Vac. Sci. Tech. B 11(4), 1281 (1993).Google Scholar
42 Lin, Z. and Cale, T. S., J. Vac. Sci. Tech. A, in press.Google Scholar
43 Liu, D., Dew, S. K. and Brett, M. J., Thin Solid Films 236, 267273 (1993).Google Scholar
44 Hsieh, J. and Joshi, R., in Advanced Metallization for ULSI Applications, Rana, V. V. S., Joshi, R. V. and Ohdomari, I., eds., MRS, 1992, p. 77. Google Scholar
45 Rossnagel, S. M. and Hopwood, J., J. Vac. Sci. Tech. B 12(1), 449 (1994).Google Scholar
46 Kim, Y.-W., Moser, J., Petrov, I., Greene, J. E. and Rossnagel, S. M., J. Vac. Sci. Tech. A 12(6), 3169 (1994).Google Scholar
47 Cale, T. S., Jain, M. K., Duffin, R. and Tracy, C. J., J. Vac. Sci. Tech. B 11(2), 311 (1993).Google Scholar
48 Rogers, B. R., in Advanced Metallization of ULSI Applications 1992, Cale, T. S. and Pintchovski, F. S., eds., MRS, 1993.Google Scholar
49 Rogers, B. R., Surf. Interface Anal. 18, 173 (1992).Google Scholar
50 Cale, T. S., Park, J. H., Raupp, G. B., Jain, M. K. and Rogers, B. R., in Advanced Metallization for ULSI Applications, Rana, V. V. S., Joshi, R. V. and Ohdomari, I., eds., MRS, 1992, p. 93. Google Scholar