Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T07:35:21.674Z Has data issue: false hasContentIssue false

Conductance-transient three-dimensional profiling of disordered induced gap states on metal-insulator-semiconductor structures

Published online by Cambridge University Press:  17 March 2011

H. Castán
Affiliation:
Dept. Electricidad y Electrónica, ETSI Telecomunicación, Universidad de Valladolid, Campus Miguel Delibes, s/n, 47011 Valladolid (Spain).
S. Dueñas
Affiliation:
Dept. Electricidad y Electrónica, ETSI Telecomunicación, Universidad de Valladolid, Campus Miguel Delibes, s/n, 47011 Valladolid (Spain).
J. Barbolla
Affiliation:
Dept. Electricidad y Electrónica, ETSI Telecomunicación, Universidad de Valladolid, Campus Miguel Delibes, s/n, 47011 Valladolid (Spain).
I. Mártil
Affiliation:
Dept. Electricidad y Electrónica, Universidad Complutense, 28040 Madrid (Spain)
G. González-Díaz
Affiliation:
Dept. Electricidad y Electrónica, Universidad Complutense, 28040 Madrid (Spain)
Get access

Abstract

As it has been shown elsewhere, conductance transient measurements provide quantitative information about the disordered induced gap states (DIGS) in metal-insulator-semiconductor (MIS) structures. In this work we report for the first time the DIGS spatial and energetical distribution obtained by recording conductance transients at several temperatures (ranging from 77 to 300 K) and several frequencies (ranging from 100 Hz to 200 KHz). These measurements allow us to obtain three-dimensional defect maps of Al/SiNx:H/InP structures browsing ranges of 0.5 eV in energy and 40 Å in depth. Our results show that this technique is a very useful tool for the electrical characterization of MIS structures and reveals itself as very valuable in the III-V semiconductor-field-effect transistor scenario.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dueñas, S., Peláez, R., Castán, H., Pinacho, R., Quintanilla, L., Barbolla, J., Mártil, I. and González-Díaz, G., Appl.Phys.Lett. 71(6), 826 (1997)Google Scholar
2. Castán, H., Dueñas, S., Barbolla, J., Redondo, E., Blanco, N., Mártil, I. and González-Díaz, G., Mic.Rel. 40 845 (2000)Google Scholar
3. Castán, H., Dueñas, S., Barbolla, J., Redondo, E., Mártil, I. and González-Díaz, G., Japan.J.Appl.Phys.. 39 6212 (2000)Google Scholar
4. Castán, H., Dueñas, S., Barbolla, J., Blanco, N., Mártil, I. and González-Díaz, G., Japan.J.Appl.Phys.. 40 4479 (2001)Google Scholar
5. Redondo, E., Mártil, I., González-Díaz, G., Castán, H. and Dueñas, S., J.Vac.Sci.Technol. B 19 (1), 186 (2001)Google Scholar
6. Castán, H., Dueñas, S., Barbolla, J., Redondo, E., Mártil, I. and González-Díaz, G., J. Mat.Sci.:Mat.in Electronics 12 263 (2001)Google Scholar
7. He, L., Hasegawa, H., Sawada, T. and Ohno, H., Jpn.J.Appl.Phys., Part.1 27, 512 (1988)Google Scholar
8. He, L., Hasegawa, H., Sawada, T. and Ohno, H., J.Appl.Phys., 63, 2120 (1988)Google Scholar