Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T07:21:38.219Z Has data issue: false hasContentIssue false

Computer Simulation of Chain Molecule-Inorganic Interphases: Chromatographic Stationary Phases and Rigid Rod Self-Assembled Monolayers

Published online by Cambridge University Press:  15 February 2011

S. J. Klatte
Affiliation:
Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221-0172
Z. Zhang
Affiliation:
Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221-0172
T. L. Beck
Affiliation:
Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221-0172
Get access

Abstract

Molecular dynamics simulations of alkane chains chemically tethered to silica surfaces are presented. The system was modeled after the stationary phases of chromatographic columns. The interphase properties were computed as functions of chain length, surface bonding density, and temperature. At densities appropriate for chromatography, the chains undergo a gradual transition with increasing temperature from a glassy state to a liquid-like state. The simulations are consistent with extensive experimental data including neutron scattering, NMR, IR, and EPR methods. The implications for chromatographic retention are discussed. In a second series of studies, we explored driving forces for observed ordering on the solid surface in terms of the various components of the chain-chain and chain-surface forces. Interfacial z profiles are sensitive functions of each of the forces. Finally, we present preliminary Monte Carlo results on origins of tilt behavior in self assembled monolayers of rigid chain species on metal surfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Physics of Polymer Surfaces, ed. I. C. Sanchez (Butterworth-Heinemann, Boston, 1992).Google Scholar
[2] Dorsey, J. G. and Dill, K. A., Chem. Rev. 89, 331 (1989).Google Scholar
[3] Sander, L. C. and Wise, S. A., CRC Crit. Rev. Anal. Chem. 18, 299, (1987).Google Scholar
[4] Sentell, K. B. and Dorsey, J. G., Anal. Chem. 61, 930 (1989).CrossRefGoogle Scholar
[5] Cole, L. A. and Dorsey, J. G., Anal. Chem. 64, 1317 (1992).Google Scholar
[6] Cole, L. A., Dorsey, J. G., and Dill, K. A., Anal. Chem. 64, 1324 (1992).Google Scholar
[7] Bohmer, M. R., Koopal, L. K., and Tijssen, R. J., J. Phys. Chem. 95, 6285 (1991).Google Scholar
[8] Yan, C. and Martire, D. E., J. Phys. Chem. 96, 7510 (1992).Google Scholar
[9] Kwan, W S V, .Atanasoska, L, and Miller, L. L., Langmuir 7, 1419 (1991).Google Scholar
[10] Allen, M. P. and Tildesley, D. J., Computer Simulation of Liquids (Oxford, Oxford, 1987)Google Scholar
[11] Computer Simulation of Polymers, ed. Roe, R. J. (Prentice-Hall, New Jersey, 1991).Google Scholar
[12] Harris, J. and Rice, S. A., J. Chem. Phys. 89, 5898 (1988).CrossRefGoogle Scholar
[13] Hautman, J.and Klein, M. L., J. Chem. Phys. 91, 4994 (1989).Google Scholar
[14] Klatte, S. J. and Beck, T. L., J. Phys. Chem. (in press).Google Scholar
[15] Wheeler, J. F., Beck, T. L., Klatte, S. J., Cole, L. A., and Dorsey, J. G., J. Chromatogr. (in press).Google Scholar
[16] Hautman, J. and Klein, M. L., J. Chem. Phys. 93, 7483 (1990).CrossRefGoogle Scholar
[17] , J Bareman, P., Cardini, G., and Klein, M. L., Phys. Rev. Lett. 60, 2152 (1988).CrossRefGoogle Scholar
[18] , D Sullivan, E. and Telo de Gama, M. M., in Fluid Interfacial Phenomena, ed. Croxton, C. A. (Wiley, New York, 1986).Google Scholar
[19] Hansen, J.-P. and McDonald, I. R., Theory of Simple Liquids (Academic, New York, 1986).Google Scholar
[20] , T Xia, K., Ouyang, M. W., Ribarsky, M. W., and Landman, U., Phys. Rev. Lett. 69, 1967 (1992).Google Scholar
[21] Murat, M. and Grest, G. S., in Computer Simulation of Polymers, ed. Roe, , , R. J. (Prentice Hall, New Jersey, 1991).Google Scholar
[22] Pratt, L. R. and Pohorille, A., Proc. Natl. Acad. Sci. 89, 2995 (1992).Google Scholar
[23] Scheringer, M., Hilfer, R., and Binder, K., J. Chem. Phys. 96, 2269 (1992).Google Scholar
[24] Cai, Z. and Rice, S. A., J. Chem. Phys. 96, 6229 (1992).Google Scholar
[24] , M Duro, C., , J. Martin-Pereda, A., and Sese, M., Phys. Rev. A 37, 284 (1988), Eqn. 3.Google Scholar