Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T01:55:54.519Z Has data issue: false hasContentIssue false

Computer Modeling of Luminescence in ABO3 Perovskites

Published online by Cambridge University Press:  21 March 2011

R. I. Eglitis
Affiliation:
Universität Osnabrück, Fachbereich Physik, D- 49069 Osnabrück, Germany
E. A. Kotomin
Affiliation:
Universität Osnabrück, Fachbereich Physik, D- 49069 Osnabrück, Germany Institute for Solid State Physics, University of Latvia, Kengaraga str. 8, Riga LV-1063, Latvia
G. Borstel
Affiliation:
Universität Osnabrück, Fachbereich Physik, D- 49069 Osnabrück, Germany
Get access

Abstract

We suggest theoretical interpretation to a long-debated discussion on a nature of the intrinsic “green” luminescence observed in many ABO3 perovskites. For this purpose we performed quantum chemical calculations using the Intermediate Neglect of the Differential Overlap combined with the Large Unit Cell periodic model. Triplet exciton which is very likely responsible for the “green” luminescence is shown to be in a good approximation a pair of nearest Jahn-Teller electron and hole polarons (a bipolaron).

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Popov, A.I. and Balanzat, E., Nucl. Instr. Meth. B166–167, 305308 (2000).Google Scholar
2. Vikhnin, V.S., Eglitis, R.I., Kotomin, E.A., Kapphan, S.E., and Borstel, G., in: Proc. Williamsburg workshop on Fundamental Physics of Ferroelectrics, AIP, 2000, in press.Google Scholar
3. Pankratov, V., Grigorjeva, L., Millers, D.K., Corradi, G., and Polgar, K., Ferroelectrics, 2000, in press; L. Grigorjeva, D.K. Millers, A.I. Popov, E.A. Kotomin, and E.S. Polzik, J. Lum. 72-74, 672-676 (1997).Google Scholar
4. Koshek, G. and Kubalek, E., Phys. Stat. Sol. A79, 131145 (1983).Google Scholar
5. Vikhnin, V.S. and Kapphan, S.E., Phys. Sol. State 40, 834840 (1998).Google Scholar
6. Vikhnin, V.S., Liu, H., Jia, W., Kapphan, S., Eglitis, R.I., and Usvyat, D., J.Lum. 83–84, 109120 (1999).Google Scholar
7. Blasse, C., Mater. Res. Bull. 18, 525530 (1983); L. G.de Haart, A.J. de Vires, and C. Blasse, J. Sol. St. Chem. 59, 291-299 (1985).Google Scholar
8. Song, K.S. and Williams, R.T., Self-trapped Excitons (Springer-Verlag, Berlin, 1993). A.L. Shluger and A.M. Stoneham, J. Phys.: Condens. Matter 5, 3049-3082 (1993).Google Scholar
9. Nistor, S.V., Goovaerts, E., and Schoemaker, D., Phys. Rev. B43, 95759586 (1993).Google Scholar
10. Faust, B., Müller, H., and Schirmer, O.F., Ferroelectrics 153, 297304 (1994).Google Scholar
11. Williams, R.T., Ucer, K.B., Xiong, G., Yochum, H.M., Grigorjeva, L., Millers, D., and Corradi, G., Rad. Eff.& Def. in Sol., (2000), in pressGoogle Scholar
12. Pople, J.A. and Beveridge, D.L., Approximate Molecular Orbital Theory (McGraw-Hill, New York, 1970).Google Scholar
13. Shluger, A.L., Theoret. Chim. Acta 66, 355365 (1985).Google Scholar
14. Stefanovich, E., Shidlovskaya, E., Shluger, A.L., and Zakharov, M., Phys. Stat. Sol. B160, 529539 (1990).Google Scholar
15. Shluger, A.L. and Stefanovich, E.V., Phys. Rev. B42, 96649675 (1990).Google Scholar
16. Stashans, A., Kotomin, E.A., and Calais, J.-L., Phys. Rev. B49, 1485414860 (1994).Google Scholar
17. Kotomin, E.A., Stashans, A., Kantorovich, L.N., Livshitz, A.I., Popov, A.I., Tale, I.A., and Calais, J.-L., Phys. Rev. B51, 87708785 (1995).Google Scholar
18. Stashans, A., Lunell, S., Bergstrom, R., Hagfeldt, A., and Lundqvist, S.-E., Phys. Rev. B53, 159167 (1996).Google Scholar
19. Stefanovich, E.V. and Shluger, A.L., J. Phys.: Condens. Matter 6, 42554266 (1994).Google Scholar
20. Stashans, A. and Kitamura, M., Solid State Commun. 99, 583587 (1996).Google Scholar
21. Eglitis, R.I., Postnikov, A.V., and Borstel, G., Phys. Rev. B54, 24212430 (1996).Google Scholar
22. Eglitis, R.I., Postnikov, A.V., and Borstel, G., Phys. Rev. B55, 1297612986 (1997).Google Scholar
23. Eglitis, R.I., Christensen, N.E., Kotomin, E.A., Postnikov, A.V., and Borstel, G.. Phys. Rev. B 56, 85998607 (1997).Google Scholar
24. Kotomin, E.A., Eglitis, R.I., and Popov, A.I., J. Phys.: Condens. Matter. 9, L315320 (1997).Google Scholar
25. Kotomin, E.A., Eglitis, R.I., Postnikov, A.V., Borstel, G., and Christensen, N.E., Phys. Rev. B 60, 15 (1999).Google Scholar
26. Eglitis, R.I., Kotomin, E.A., and Borstel, G., J. Phys.: Condens. Matter 12, L431436 (2000).Google Scholar
27. Eglitis, R.I., Kotomin, E.A., Borstel, G., and Dorfman, S., J. Phys.: Condens. Matter 10, 62716280 (1998).Google Scholar
28. Evarestov, R.A. and Lovchikov, V.A., Phys. Stat. Sol. B93, 469480 (1977).Google Scholar
29. Kotomin, E.A., Eglitis, R.I., Borstel, G., Grigorjeva, L., Millers, D., and Pankratov, V., Nucl. Inst. Meth. B166–167, 299304 (2000).Google Scholar
30. Köhne, S., Schirmer, O.F., Hesse, H., Kool, T.W., and Vikhnin, V.S., J. of Supercond., 12, 193200 (1999).Google Scholar