Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T07:28:46.407Z Has data issue: false hasContentIssue false

Computational Study of Optical Properties of Cellulose Triacetate Film

Published online by Cambridge University Press:  17 January 2013

Daichi Hayakawa*
Affiliation:
Department of Chemistry, Graduate School of Engineering, Yokohama National University79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan
Kazuyoshi Ueda
Affiliation:
Department of Chemistry, Graduate School of Engineering, Yokohama National University79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan
Get access

Abstract

The birefringence of a cellulose triacetate (CTA) polymer film was evaluated based on density functional theory and molecular dynamics (MD) simulation. The polarizability of the monomer unit of CTA was initially calculated to determine the intrinsic properties of the birefringence of CTA. The most important conformational freedom of the CTA monomer unit is derived from the C-6 acetyl methyl groups. This exocyclic group is known to have three low energy conformers referred to as gg, gt, and tg according to the rotation of the different torsion angles. Because the polarizability can be viewed as dependent on the conformation of CTA, the polarizability of these three conformers was evaluated. The results demonstrated that negative intrinsic birefringence was associated with the CTA repeating units having gg or gt structures, whereas the monomer units with tg structures were characterized by positive intrinsic birefringence. A model of the polymer film was constructed based on MD simulation and the birefringence of the model was evaluated using the calculated monomer birefringence values. The birefringence of the CTA film was found to be negative because most of the CTA repeating units adopt the gg conformation in the film. The negative value of the simulated birefringence is in good agreement with the result obtained by the experiment.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Shibata, T., Macromol. Symp. ed. Meisel, I. (Wiley-VCH, 2004).Google Scholar
Terui, Y., Ando, S., J. Polym. Sci. Part B 42, 2354 (2004).10.1002/polb.20114CrossRefGoogle Scholar
Gaussian 09, Revision A.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009. Google Scholar
Hess, B., Kutzner, C., van der Spoel, D. and Lindahl, E., J. Chem. Theory Comput. 4, 435 (2008).CrossRefGoogle Scholar
van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E. and Berendsen, H. J. C., J. Comp. Chem. 26, 1701 (2005).CrossRefGoogle Scholar
Lindahl, E., Hess, B. and van der Spoel, D., J. Mol. Mod. 7, 306 (2001).10.1007/s008940100045CrossRefGoogle Scholar
Berendsen, H. J. C., van der Spoel, D. and van Drunen, R., Comp. Phys. Comm. 91, 43 (1995).10.1016/0010-4655(95)00042-ECrossRefGoogle Scholar
Palma, R., Zuccato, P., Himmel, M. E., Liang, G. and Brady, J. W., Glycosyl Hydrolases for Biomass Conversion, 112 (2000).CrossRefGoogle Scholar
Bogan, R. T., Kuno, C. M. and Brewer, R. J., Kirk-Othmer Encyclopedia of Chemical Technology, ed. Kroschwitz, J. I. (John Wiley and Sons 1979).Google Scholar
Nishio, Y., Ohno, T. and Kusumi, R., Cellulose Commun. 14, 30 (2007).Google Scholar
Yu, I., Iwata, K., Ueda, K. and Nakayama, H., Bull. Chem. Soc. Jpn. 76, 2285 (2003).CrossRefGoogle Scholar