Article contents
Computational DFT Study of ZrSiO4 Polymorphs: Microelectronic, Nuclear Safety and Geological Implications
Published online by Cambridge University Press: 26 February 2011
Abstract
Zirconium silicate is an extremely durable materials with the variety of useful optical and electronic properties and broad range of existing and potential applications. Using Density Functional Theory (DFT) in local density approximation (LDA) and generalized gradient approximation (GGA) with plane wave (PW) basis set we have revealed eight new polymorphs of ZrSiO4 within the energy range ∼1 eV above the most stable zircon which have higher and lower density than experimentally known zircon and reidite. Two structures, which have both silicon and zirconium atoms six-fold coordinated, orthorhombic AlTaO4-like (alumotantite) and monoclinic PbWO4-like (raspite), have similar energies at GGA level ∼0.35 eV above reidite and density intermediate between zircon and reidite. Among two low-density structures, which can be potentially revealed experimentally in the nanocrystalline thin films, the orthorhombic CaSO4-like form has energy similar to reidite but much lower density. We also conducted a comparative study of existing ZrO2 and SiO2 polymorphs, which demonstrates the higher accuracy of GGA approach.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2006
References
1 Erwing, R. C., Luize, W., and Weber, W.J., J. Mater. Res. 10, 243 (1995); A. Meldrum, L.A. Boatner, W.J. Weber, and R.C. Erwing, Geochem. Cosmochem. Acta 62, 2509 (1998); R.C. Erwing, Proc. Natl. Acad. Sci. 96, 3432 (1999).CrossRefGoogle Scholar
2 Ando, E., Ebisawa, J., Hayashi, Y., Mitsui, A., Suzuki, S., J. Non-Crystalline Solids 178 (1994) 238.CrossRefGoogle Scholar
3 Wilk, G., Wallace, R.W., Anthony, J.M., J. Appl. Phys. 89 (2001) 5234.CrossRefGoogle Scholar
4 Rios, S., Malcherek, T., Salje, E.K.H., Domeneghetti, C., Acta Cryst. B 56, 947 (2000).CrossRefGoogle Scholar
5 Reid, A. F. and Ringwood, A.E., Earth. Planet. Sci. Lett. 6, 205 (1969); Liu, L.G., ibid 44, 390 (1979).CrossRefGoogle Scholar
6 Zalkin, A., Templeton, D.N., J. Chem. Phys., 40, 501 (1964); M.I. Kay, B.C. Frazer, I. Almodovar, Ibid. 40, 504 (1964).CrossRefGoogle Scholar
7 Kusaba, K., Yagi, T., Kikuchi, M., and Syono, Y., J. Phys. Chem. Solids 47, 675 (1986).CrossRefGoogle Scholar
8 Crocombette, J.-P. and Ghaleb, D., J. Nuc. Mat. 257, 282 (1998)CrossRefGoogle Scholar
9 Farnan, I., Balan, E., Pickard, C.J., and Mauri, F., Am. Mineralogist 88, 1663 (2003).CrossRefGoogle Scholar
10 Akhtar, M. J., and Waseem, S., Solid State Sci. 5, 541 (2003).CrossRefGoogle Scholar
11 Tange, Y. and Takahashi, E., Phys. Earth Planet. Inter. 143–144, 223 (2004).CrossRefGoogle Scholar
12 Stemmer, S., Schlom, D.G., In Nano and Giga Challenges in Microelectronics, edited by Greer, J., Korkin, A. and Labanowski, J. (Elsevier, Amsterdam, 2003), p. 129.CrossRefGoogle Scholar
13 Gucsik, A., Koeberl, C., Brandstätter, F., Reimold, W.U., and Libowitzky, E., Earth Planet. Sci. Lett. 202, 495 (2002).CrossRefGoogle Scholar
14 Balan, E., Mauri, F., Pickard, C.J., Farnan, I., and Calas, G., Am. Mineralogist, 88, 1769 (2003).CrossRefGoogle Scholar
15 Lucovsky, G., and Rayner, G.B. Jr., Appl. Phys. Lett. 77, 2912 (2000).CrossRefGoogle Scholar
16 Rignanese, G.-N., Detraux, F., Gonze, X., Bongiorno, A., Pasquarello, A., Phys. Rev. Lett. 89, 117601 (2002).CrossRefGoogle Scholar
17 http://database.iem.ac.ru/mincryst/ (Crystallographic and Crystallochemical Database for Mineral and their Structural Analogues).Google Scholar
18 http://webmineral.com/ (Minerology Database)Google Scholar
19 Ceperley, D. M. and Adler, B. J., Phys. Rev. Lett. 45, 566 (1980); S. J. Vosko, L. Wilk and M Nusair, Can. J. Phys. 58, 1200 (1980).CrossRefGoogle Scholar
20 Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M.R., Singh, D. J. and Fiolhais, C., Phys. Rev. B 46, 6671 (1992); Perdew, J. P. and Wang, Y., Phys. Rev. B 45, 13244 (1992).CrossRefGoogle Scholar
21 Vanderbilt, D., Phys. Rev. B 85, 7892 (1990); Kresse, G. and Hafner, J., J. Phys.: Condens. Matter 6, 8245 (1994).CrossRefGoogle Scholar
22 Blöchl, P. E., Phys. Rev. B 50, 17953 (1994); Kresse, G. and Joubert, D., Phys. Rev B 59, 1758 (1999).CrossRefGoogle Scholar
23 Monkhorst, H. J. and Pack, J. D., Phys. Rev. B 13, 5188 (1976).CrossRefGoogle Scholar
24 Murnaghan, F. D., Proc. Natl. Acad. Sci. 30, 244 (1944); F. Birch, J. Geophys. Res. 83, 1257 (1978).CrossRefGoogle Scholar
25 Jepson, O. and Anderson, O. K., Solid State Commun. 9, 1763 (1971); Blöchl, P. E., Jepsen, O. and Andersen, O. K., Phys. Rev. B 49, 16223 (1994).CrossRefGoogle Scholar
26 Vienna ab initio simulation package (VASP); Version 4.4.5; http://cms.mpi.univie.ac.at/vasp/. See also Kresse, G. and Furthmüller, J., Comput. Mater. Sci., 6, 4136 (1996).CrossRefGoogle Scholar
27 Roth, R. S. and Waring, J.L., Am. Mineralogist 48, 1348 (1963).Google Scholar
28 Hawthorne, F. C. and Ferguson, R.B., Canad. Mineral. 13, 289 (1975).Google Scholar
29 Ni, Y., Hughes, J.M., and Mariano, A.N., Am. Mineralogist 80, 21 (1995).CrossRefGoogle Scholar
30 Weitzel, H. and Schrocke, H., Z. Kristallogr. 152, 69 (1980).CrossRefGoogle Scholar
31 Wang, X., Loa, I., Syassen, K., Hanfland, M., and Ferrand, B., Phys. Rev. B 70, 064109 (2004)CrossRefGoogle Scholar
32 Grzechnik, A., Crichton, W.A., Hanfland, M., and van Smaalen, S., J. Phys.: Condens. Matter 15, 7261 (2003)Google Scholar
33 Crichton, W. A. and Grzechnik, A., Krystallogr, Z.. NCS 219, 337 (2004).Google Scholar
34 Grezechnik, A., Syassen, K., Loa, I., Haufland, M., and Gesland, J.Y., Phys. Rev. B 65, 104102 (2002); J. Manion, S. Jandl, K. Syassen, and J.Y. Gesland, Phys. Rev. B 64, 235108 (2002).CrossRefGoogle Scholar
35 Hazen, R. M. and Finger, L.W., Amer. Mineral. 64, 196 (1979).Google Scholar
36 Scott, H. P., Williams, Q., and Knittle, E., 88, 15506 (2002).Google Scholar
37 Ercit, T. S., Hawthorne, F.C., and Cerny, P., Canad. Mineral., 30, 653 (1992).Google Scholar
38 Fujita, T., Kawada, J., and Kato, K., Acta Cryst. B 33, 162 (1977).CrossRefGoogle Scholar
39 Weitzel, H., Z. Kristallogr. 144, 238(1976).CrossRefGoogle Scholar
40 Wilder, M. and Giester, G., Mineralogy and Petrology, 39, 201 (1988).CrossRefGoogle Scholar
41 Petrovic, I., Heaney, P.J., and Navrotsky, A., Phys. Chem. Minerals 23, 119 (1996).CrossRefGoogle Scholar
42 Holm, J. L., Kleppa, O.J., and Westrum, E.E. Jr. Geochim. Cosmochim. Acta 31, 2289 (1967).CrossRefGoogle Scholar
43 Akaogi, M., and Navrotsky, A., Phys. Earth. Planet. Inter. 36, 124 (1984).CrossRefGoogle Scholar
44 Ackerman, R., Rauh, E. G., and Alexander, C. A., High Temp. Sci. 7, 304 (1975).Google Scholar
45 Hamann, D. R., Phys. Rev. Lett. 76, 660 (1996).CrossRefGoogle Scholar
46 Jaffe, J. E., Bachorz, R.A., and Gutowski, M., Phys. Rev. B 72, 144107 (2005).CrossRefGoogle Scholar
47 Keskar, N. R., and Chelikowsky, J. R., Phys. Rev. B. 46, 1 (1992).CrossRefGoogle Scholar
48 Králik, B., Chang, E. K. and Louie, S. G., Phys. Rev. B 57, 7027 (1998).CrossRefGoogle Scholar
- 1
- Cited by