Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T16:32:33.479Z Has data issue: false hasContentIssue false

A Comprehensive Atomistic Kinetic Monte Carlo Model for Amorphization/Recrystallization and its Effects on Dopants

Published online by Cambridge University Press:  01 February 2011

Nikolas Zographos
Affiliation:
[email protected], Synopsys Switzerland LLC, TCAD, Affolternstrasse 52, Zürich, 8050, Switzerland
Ignacio Martin-Bragado
Affiliation:
[email protected], Synopsys Inc., 700 East Middlefield Road, Mountain View, CA, 94043, United States
Get access

Abstract

This work shows a comprehensive atomistic model to describe amorphization and recrystallization, and its different effects on dopants in silicon. We begin by describing the physical basis of the model used, based on the transformation of ion-implanted dopants and generated point defects into amorphous pockets of different sizes. The growth and dissolution of amorphous pockets is simulated by the capture and recombination of point defects with different activation energies. In some cases, this growth leads to the formation of amorphous layers. These layers, composed of a set of amorphous elements, have an activation energy to be recrystallized. The recrystallization velocity is modeled not only depending on temperature, but also on dopant concentration. During the recrystallization, dopants move with the recrystallization front to simulate the dopant redistribution during solid phase epitaxial regrowth (SPER). At the edge of the amorphous-crystalline interface, the remaining damage forms end-of-range (EOR) defects.

Once the model is explained, we discuss the calibration methodology used to reproduce several amorphous/crystalline (A/C) experiments, including the dependencies of the A/C transition temperature on dose rate and ion mass, and the A/C depth on ion implant energy.

This calibrated model allows us to explore the redistribution of several dopants, including B, As, F, and In, during SPER. Experimental results for all these dopants are compared with relevant simulations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sentaurus Process User Guide, A-2007.12, Synopsys Inc., Mountain View, CA (2007).Google Scholar
2. Jaraiz, M., Castrillo, P., Pinacho, R., Martin-Bragado, I., Barbolla, J., in Tsoukalas, D. and Tsamis, C. (Eds.), Simulation of Semiconductor Processes and Devices, p. 10. (2001).Google Scholar
3. Martin-Bragado, I., Tian, S., Johnson, M., Castrillo, P., Pinacho, R., Rubio, J., Jaraiz, M., Nucl. Inst. Meth. Phys. Res. B 253, 6367 (2006).Google Scholar
4. Mok, K.R.C., Jaraiz, M., Martin-Bragado, I., Rubio, J. E., Castrillo, P., Pinacho, R., Barbolla, J., Srinivasan, M. P., J. Appl. Phys. 98, 046104 (2005).Google Scholar
5. Mok, K.R.C., Colombeau, B., Benistant, F., Teo, R. S., Yeong, S. H., Yang, B., Jaraiz, M., Chu, Shao-Fu Sanford, IEEE Trans. Elec. Dev. 54 (9) (2007).Google Scholar
6. Pelaz, L., Marqués, L.A., Barbolla, J., J. Appl. Phys. 96, 11, 5947 (2004).Google Scholar
7. Olson, G.L. and Roth, J.A., Materials Science Reports 3, 178 (1988).Google Scholar
8. Goldberg, R.D., Williams, J.S., Elliman, R.G., Nucl. Inst. Meth. Phys. Res. B 106, 242247 (1995).Google Scholar
9. Wang, H.C.H., Wang, C.C., Chang, C.S., Wang, T., Griffin, P.B., Diaz, C.H., IEEE Elec. Dev. Lett. 22 (2), 65 (2001).Google Scholar
10. Duffy, R., Venezia, V.C., Heringa, A., Husken, T.W.T., Hopstaken, M.J.P., Cowern, N.E.B., Griffin, P.B., Wang, C.C., Appl. Phys. Lett. 82, 3647 (2003).Google Scholar
11. Venezia, V.C., Duffy, R., Pelaz, L., Aboy, M., Heringa, A., Griffin, P.B., Wang, C.C., Hopstaken, M.J.P., Tamminga, Y., Dao, T., Pawlak, B.J., Roozeboom, F., IEDM Tech. Digest, 489492 (2003).Google Scholar
12. Suzuki, K., Kataoka, Y., Nagayama, S., Magee, C.W., Büyüklimanli, T.H., Nagayama, T., IEEE Trans. Elec. Dev. 54 (2) (2007).Google Scholar
13. Impellizari, G., Mirabella, S., Priolo, F., Napolitani, E., Carnera, A., J. Appl. Phys. 99, 103510 (2006).Google Scholar