Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T07:33:06.373Z Has data issue: false hasContentIssue false

Compositionally Modulated Structures Studied by in Situ Scanning Tunneling Microscopy

Published online by Cambridge University Press:  17 March 2011

Chris A. Pearson
Affiliation:
Department of Computer Science, Engineering Science and Physics, University of Michigan-Flint, Flint, MI 48502
Catalina Dorin
Affiliation:
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109
Joanna Mirecki Millunchick
Affiliation:
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109
Yunqing Chen
Affiliation:
The Harrison M. Randall Laboratory, University of Michigan, Ann Arbor, MI 48109
Brad G. Orr
Affiliation:
The Harrison M. Randall Laboratory, University of Michigan, Ann Arbor, MI 48109
Get access

Abstract

Two different short period superlattice (SPS) structures with nominally equivalent lattice mismatch, InAs/AlAs and InAs/GaAs are examined using in situ scanning tunneling microscopy (STM). Depending upon the growth conditions, the composition of the InAs/AlAs SPS structure can be either homogeneous or modulated in the lateral direction. Distinct periodic structures are clearly visible in images of the modulated SPS while no periodicity is observed in the homogeneous SPS. For a 30 period SPS consisting of 2 monolayers of AlAs and 2 monolayers of InAs we observe structures 20 nm in size with an average spacing of ∼25 nm in orthogonal directions, which is approximately the same length scale as the composition modulation. Despite the nominally equivalent lattice mismatch, the InAs/GaAs SPS structures are quite different. Some degree of modulation is always observed in these structures. Homogeneous structures are not observed. For the modulated SPS structures, scanning tunneling spectroscopy can be used to characterize the chemical profile.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wohlert, D. E., Cheng, K. Y., and Chou, S. T., Appl. Phys. Lett. 78, 1047 (2001).Google Scholar
2. Norman, A. G., Ahrenkiel, S. P., Moutinho, H., Al-Jassim, M. M., Mascarenhas, A., Millunchick, J. Mirecki, Lee, S. R., Twesten, R. D., Follstaedt, D. M., Reno, J. L., and Jones, E. D., Appl. Phys. Lett. 73, 1844 (1998).Google Scholar
3. Millunchick, J. Mirecki, Twesten, R. D., Lee, S. R., Follstaedt, D. M., Jones, E. D., Ahrenkiel, S. P., Zhang, Y., Cheong, H. M., and Mascarenhas, A., J. Elect. Mat. 26, 1049 (1997).Google Scholar
4. Millunchick, J. Mirecki, Twesten, R. D., Follstaedt, D. M., Lee, S. R., Jones, E. D., Zhang, Y., Ahrenkiel, S. P., and Mascarenhas, A., Appl. Phys. Lett. 70, 1402 (1997).Google Scholar
5. Millunchick, J. Mirecki, Twesten, R. D., Lee, S. R., Follstaedt, D. M., Jones, E. D., Ahrenkiel, S. P., Zhang, Y., Cheong, H. M., and Mascarenhas, A., MRS Bulletin 22, 38 (1997).Google Scholar
6. Wohlert, D. E. and , K. Y., Appl. Phys. Lett. 76, 2247 (2000).Google Scholar
7. Twesten, R. D., Follstaedt, D. M., Lee, S. R., Jones, E. D., Reno, J. L., Millunchick, J. Mirecki, Norman, A. G., Ahrenkiel, S. P., and Mascarenhas, A., Phys. Rev. B 60, 13619 (1999).Google Scholar
8. Follstaedt, D. M., Reno, J. L., Jones, E. D., Lee, S. R., Norman, A. G., Moutinho, H., Mascarenhas, A., and Twesten, R. D., Appl. Phys. Lett. 77, 669 (2000).Google Scholar
9. Cheng, K. Y., Hsieh, K. C., and Baillargeon, J. N., Appl. Phys. Lett. 60, 2892 (1992).Google Scholar
10. Shiraishi, K., Appl. Phys. Lett. 60, 1363 (1992).Google Scholar
11. Chou, S. T., Cheng, K. Y., Chou, L. J., and Hseih, K. C., Appl. Phys. Lett. 78, 6270 (1995).Google Scholar
12. Dorin, C. and Millunchick, J. Mirecki, J. Appl. Phys. in press.Google Scholar
13 Dorin, C., Millunchick, J. Mirecki, Chen, Y., Orr, B. G., and Pearson, C. A., Appl. Phys. Lett. in press.Google Scholar
14. Dehaese, O., Wallart, X., and Mollot, F., Appl. Phys. Lett. 66, 52 (1995).Google Scholar