Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T19:27:28.622Z Has data issue: false hasContentIssue false

Compositional Modulations and Vertical Two-Dimensional Arsenic-Precipitate Arrays and in Low Temperature Grown Al0.3GA0.7AS

Published online by Cambridge University Press:  22 February 2011

K.Y. Hsieh
Affiliation:
Institute of Materials Science and Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan, R.O.C
Y.L. Hwang
Affiliation:
LSI logic, 1601 McCarthy Blvd M.S. B-142 Milpitas CA 95035, U.S.A
T. Zhang
Affiliation:
Department of Materials Science and Engineering North Carolina State University, Raleigh, NC 27695-7911, U.S.A
R.M. Kolbas
Affiliation:
Department of Materials Science and Engineering North Carolina State University, Raleigh, NC 27695-7911, U.S.A
Get access

Abstract

Compositional modulations and arsenic precipitates in annealed A10.3Ga0.7As layers which were grown at a low substrate temperature (200° C) by molecular beam epitaxy (MBE) were studied by transmission electron microscopy (TEM). These layers were used as surface layer which were applied on metal-insulator-semiconductor (MIS) diode. The planar and cross sectional TEM micrographs reveal that compositional modulations occurred when the thickness of LT AIGaAs was over 1500Å. The wavelength of the modulations varies between 100-200 Å and the direction of the modulation is along \011]. The arsenic precipitates were formed after annealed and the distribution of them followed the compositional modulation. Vertical two dimensional arsenic-precipitates arrays were arranged in the low aluminum constitute region. These novel microstructures result from the strain-induced spinodal decomposition and the arsenic precipitates redistribution process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Smith, F.W., Calawa, A.R., Lee, C., , Mantra, and Mahoney, L.J., IEEE Electron. Device Lett. EDL–9, 7780 (1989)Google Scholar
[2] Melloch, M.R., Miller, D.C., and Das, B., Appl. Phys. Lett. 54. 943945 (1989)CrossRefGoogle Scholar
[3] Warren, A.C., Katzenellenbogen, N., Grischkowsky, D., Woodall, J.M., Melloch, M.R., and Otsuka, N., Appl. Phys. Lett 58 15121514 (1991).CrossRefGoogle Scholar
[4] Warren, A.C., Burroughes, J.H., Woodall, J. M., Mclnturff, D.I., Hodgon, R.T., and Melloch, M.R., IEEE Electron Device Lett. EDL–12, 527529 (1991)Google Scholar
[5] Kaminska, M., Lilliental-Weber, Z., Weber, E.R., George, T., Kortright, J.B., Smith, F.W., Tsaur, B.Y., and Calawa, A.R., Appl. Phys. Lett. 54, 18811883 (1989).Google Scholar
[6] Warren, A.C., Woodall, J.M., Freeout, J.L., Grischkowsky, D., Mclnsurff, D.T., Melloch, M.R., and , Otsuka, Appl. Phys. Lett. 57. 13311333 (1990)Google Scholar
[7] Mahalingam, K., Otsuka, N., Melloch, M.R., Woodall, J.M. and Warren, A.C., J.Vac. Sci. Technol. B 10. 812814 (1992)Google Scholar
[8] Mahalingam, K. and Otsuka, N., Melloch, M.R. and Woodall, J.M., Appl. Phys. Lett. 60, 32533255 (1992).Google Scholar
[9] M.R. Melloch, Otsuka, N., Mahalingam, K., Chang, C.L., Kirchner, P.D., Woodall, J.M. and Warren, A.C., Appl. Phys. Lett. 61, 177179 (1992).Google Scholar
[10] Henoc, P., Izrael, A., Quillec, M. and Launois, H., Appl. Phys. Lett.. 40, 963965 (1982).CrossRefGoogle Scholar
[11] Treacy, M.J., Gibson, J.M. and Howie, A., Phil. Mag. A 51, 389 (1985).Google Scholar
[12] Kuan, T.S., Kuech, T.F., Wang, W.I., and Wilkie, E.L., Phys. Rev. Lett, 54, 201 (1985).CrossRefGoogle Scholar
[13] Stringfellow, G.B.,J.Cryst. Gorwth, 27, 21 (1974).Google Scholar
[14] MUller, E.K. and Rchards, J.L., J. Appl. Phys. 35, 1233 (1964).Google Scholar
[15] Pessetto, J.R. and Stringfellow, G.B., J. Cryst. Growth. 62, 1 (1982).Google Scholar
[16] Quillec, M., Daguet, C., Benchimol, J.L. and Launois, H., Appl. Phys. Lett. 40, 325327 (1982)CrossRefGoogle Scholar
[17] Launois, H., Quillex, M. Glas, F. and Treacy, M.J., GaAs and Related Cpds, Albuquerque 1982 Inst. Phys. Conf. Ser. 65 537 (1983).Google Scholar
[18] Chiu, J.H., Tsang, W.T., Chu, S.N. G., Shan, J. and Ditzenberger, J.A., Appl. Phys. Lett. 46, 408410 (1985).CrossRefGoogle Scholar
[19] Norman, A.G. and Booker, G. R., J.Appl. Phys. Vol 57, pp4715- 1985 Google Scholar
[20] Mahajan, S., Dutt, B. V., Temkin, H., Cava, R.J. and Bonner, W.A., J.Cryst. Growth. 68 589 (1984)Google Scholar
[21] Hsieh, K.C., Baillargeon, J.N., and Cheng, K.Y., Appl. Phys. Lett. 57 22442246 (1990).Google Scholar