Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T17:26:21.505Z Has data issue: false hasContentIssue false

Compliant Substrates for Reduction of Strain Relief in Mismatched Overlayers

Published online by Cambridge University Press:  10 February 2011

Carrie Carter-Coman
Affiliation:
Georgia Institute of Technology, Electrical and Computer Engineering, Atlanta, GA 30332-0269.
Robert Bicknell-Tassius
Affiliation:
Was with Georgia Tech Research Institute, Atlanta, GA 30332.Now at Jet Propulsion Laboratory, M/S 302-306, 4800 Oak Grove Drive, Pasadena, CA 91109.
April S. Brown
Affiliation:
Georgia Institute of Technology, Electrical and Computer Engineering, Atlanta, GA 30332-0269.
Nan Marie Jokerst
Affiliation:
Georgia Institute of Technology, Electrical and Computer Engineering, Atlanta, GA 30332-0269.
Get access

Abstract

Thin film compliant substrates can be used to extend the critical thickness in mismatched overlayers. A metastability model has been coupled with recent experimental strain relief data to determine the critical thickness of InGaAs epilayers grown on GaAs compliant substrates of variable thickness. The results of this model are also compared to other compliant substrate critical thickness models.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hirth, J. P. and Evan, A. G., J. Appl. Phys. 60(7), 2372 (1986).Google Scholar
2. Carter-Coman, C., Fournier, F., Brown, A. S., Jokerst, N. M., and Allen, M., Appl. Phys. Lett. 69(2), 257 (1996).Google Scholar
3. Lo, Y. H., Appl. Phys. Lett. 59, 2311 (1991).Google Scholar
4. Powell, A., LeGoues, F. K., and Iyer, S. S., Appl. Phys. Lett. 64, 324 (1994).Google Scholar
5. Guarin, F. J., Iyer, S., Yang, Z., Wang, W. I., Hunt, C. E., Baumgart, H., Iyer, S. S., Abe, T., and Gasele, U., Proc. 3rd International Symposium on Semiconductor Wafer Bonding: Physics and Applications, 561 (1995).Google Scholar
6. Teng, D. and Lo, Y. H., Appl. Phys. Lett. 62(1), 43 (1993).Google Scholar
7. Freund, L. B. and Nix, W. D., Appl. Phys. Lett. 69, 173 (1996).Google Scholar
8. Carter-Coman, C., Brown, A. S., Jokerst, N. M., Dawson, D. E., Bicknell-Tassius, R., Feng, Z. C., Rajkumar, K. C., and Dagnall, G., J. Electron. Mat. 25(7), 2170 (1996).Google Scholar
9. Carter-Coman, C., Bicknell-Tassius, R., Benz, R. G., Brown, A. S., and Jokerst, N. M., accepted.for puhlication in J. Elecirochem. Soc. August 1996.Google Scholar
10. Dodson, B. W. and Tsao, J. Y., Appl. Phys. Lett. 51(7), 1325 (1987). B. W. Dodson and J. Y. Tsao, Appl. Phys. Lett. 52(10), 852 (1988).Google Scholar
11. Alexander, H. and Haasen, P., Solid State Physics (Academic, New York, 1968), Vol.22 Google Scholar
12. Carter-Coman, C., Bicknell-Tassius, R., Brown, A. S., and Jokerst, N. M., submitted to Appl. Phys. Lett. Nov (1996).Google Scholar
13. X-ray diffraction can measure strain relief greater than 10-4 cm2 (see for example ref 13).Google Scholar
14. Haliwell, M. A. G., Inst. Phys. Conf Ser. No. 60, Section 5, 271 (1981).Google Scholar
15. Wie, C. R., J Appl. Phys. 65(6), 2267 (1989).Google Scholar