Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T01:53:27.506Z Has data issue: false hasContentIssue false

Complex Hydrides Studied by Raman Spectroscopy and Thermal Conductivity Measurements under High Pressure

Published online by Cambridge University Press:  26 February 2011

Bertil Sundqvist
Affiliation:
[email protected], Umeå University, Department of Physics, Linnaeus Vag 20, Umeå, S-90187, Sweden, +46 90 786 7488
Alexandr V. Talyzin
Affiliation:
[email protected], Umeå University, Department of Physics, Umeå, S-90187, Sweden
Ove Andersson
Affiliation:
[email protected], Umeå University, Department of Physics, Umeå, S-90187, Sweden
Get access

Abstract

The pressure-temperature phase diagrams of alkali metal alanates and borohydrides are of large current interest, and we have recently studied phase transformations under pressure in several of these materials. We here report Raman studies of KBH4 under pressure at room temperature, showing a phase transition near 6 GPa. Although no structural information is yet available, the similarity between KBH4 and NaBH4 suggests the new structure is orthorhombic. We also report studies on LiBH4 showing that the high pressure phase of this material is metastable to zero pressure below 200 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Vajeeston, P., Ravindran, P., Vidya, R., Fjellvåg, H., and Kjekshus, A., Phys. Rev. B 68, 212101 (2003).Google Scholar
2. Vajeeston, P., Ravindran, P., Vidya, R., Fjellvåg, H., and Kjekshus, A., Appl. Phys. Lett. 82, 2257 (2003).Google Scholar
3. Łodziana, Z. and Vegge, T., Phys. Rev. Lett. 93, 145501 (2004).Google Scholar
4. Ravindran, P., Vajeeston, P., Fjellvåg, H., and Kjekshus, A., Comput. Mater. Sci. 30, 349 (2004).Google Scholar
5. Frankcombe, T.J., Kroes, G.-J., and Züttel, A., Chem. Phys. Lett. 405, 73 (2005).Google Scholar
6. Talyzin, A.V. and Sundqvist, B., Phys. Rev. B 70, 180101 (2004).Google Scholar
7. Nakano, S., Nakayama, A., and Takemura, K., Proc. 20thAIRAPT Conf. on High Pressure, edited by Dinjus, E. and Dahmen, N., T10-P58 (Karlsruhe 2005; http://www.unipress.waw.pl/airapt/AIRAPT-20/html/proceedings/index.html).Google Scholar
8. Talyzin, A.V., Sundqvist, B., Araújo, C.M., and Ahuja, R., Proc. 20thAIRAPT Conf. on High Pressure, edited by Dinjus, E. and Dahmen, N., T5-P27 (Karlsruhe 2005; http://www.unipress.waw.pl/airapt/AIRAPT-20/html/proceedings/index.html).Google Scholar
9. Sihachakr, D., Andre, R., and Loubeyre, P., Proc. 20thAIRAPT Conf. on High Pressure, edited by Dinjus, E. and Dahmen, N., T12-P128 (Karlsruhe 2005; http://www.unipress.waw.pl/airapt/AIRAPT-20/html/proceedings/index.html).Google Scholar
10. Araújo, C.M., Ahuja, R., Talyzin, A.V., and Sundqvist, B., Phys. Rev. B 72, 054125 (2005).Google Scholar
11. Kumar, R.S. and Cornelius, A.L., Appl. Phys. Lett. 87, 261916 (2005).Google Scholar
12. Pitt, M.P., Blanchard, D., Hauback, B.C., Fjellvåg, H., and Marshall, W.G., Phys. Rev. B 72, 214113 (2005).Google Scholar
13. Chellappa, R.S., Chandra, D., Gramsch, S.A., Hemley, R.J., Lin, J.-F., and Song, Y., J. Phys. Chem. B 110, 11088 (2006).Google Scholar
14. Talyzin, A.V. and Sundqvist, B., High Pressure Res. 26, 165 (2006).Google Scholar
15. Sundqvist, B. and Andersson, O., Phys. Rev. B 73, 092102 (2006).Google Scholar
16. Talyzin, A.V., Andersson, O., Sundqvist, B., Kurnosov, A., and Dubrovinsky, L., J. Solid State Chem. (accepted, 2006).Google Scholar
17. Renaudin, G., Gomes, S., Hagemann, H., Keller, L., and Yvon, K., J. Alloys Compd. 375, 98 (2004).Google Scholar
18. Pistorius, C.W.F.T., Z. Phys. Chem., Neue Folge 88, 253 (1974).Google Scholar
19. Håkansson, B., Andersson, P., and Bäckström, G.. Rev. Sci. Instrum. 59, 3093 (1988).Google Scholar