Article contents
Competitive Oxidation During Buried Oxide Formation Using Separation by Plasma Implantation of Oxygen (Spimox)
Published online by Cambridge University Press: 21 February 2011
Abstract
We have recently demonstrated a new implantation technique called SPIMOX (separation by plasma implantation of oxygen) to synthesize silicon-on-insulator structures using plasma immersion ion implantation (PIII) process. the implantation is performed by applying a large negative bias to a Si wafer immersed in an oxygen plasma created by an ECR source. Since the technique has no mass analysis, coexistence of O+ and O2+ ions in oxygen plasma can cause a non-Gaussian profile of the as-implanted oxygen distribution. We observed that during post-implantation annealing, the ripening process of the oxide precipitates depends on depth and concentration of the oxygen peaks. IN addition, implanted oxygen can migrate towards the Si surface during annealing, preventing a continuous buried oxide layer formation. IN this paper, we report our observation on the effect of the implantation profile on the competitions between internal oxidation at different depths and between internal and surface oxidation processes. With an additional He implantation, we demonstrate that the nucleation of oxide precipitation can be enhanced.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1995
References
References:
- 1
- Cited by