Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T18:53:12.101Z Has data issue: false hasContentIssue false

Competition Between Internal and Surface Crystallization in Glass-ceramics Developed for Actinides Immobilization

Published online by Cambridge University Press:  01 February 2011

Pascal Loiseau
Affiliation:
Laboratoire de Chimie Appliquée de l'Etat Solide (UMR CNRS 7574), ENSCP, 11 rue P. et M. Curie, 75231 Paris (France)
Daniel Caurant
Affiliation:
Laboratoire de Chimie Appliquée de l'Etat Solide (UMR CNRS 7574), ENSCP, 11 rue P. et M. Curie, 75231 Paris (France)
Odile Majerus
Affiliation:
Laboratoire de Chimie Appliquée de l'Etat Solide (UMR CNRS 7574), ENSCP, 11 rue P. et M. Curie, 75231 Paris (France)
Nöel Baffier
Affiliation:
Laboratoire de Chimie Appliquée de l'Etat Solide (UMR CNRS 7574), ENSCP, 11 rue P. et M. Curie, 75231 Paris (France)
Catherine Fillet
Affiliation:
CEA/DEN/DIEC/SCDV/LEBM), 30207 Bagnols sur Cèze (France)
Get access

Abstract

Glass-ceramic matrices containing zirconolite (nominally CaZrTi2O7) as the only crystalline phase in their bulk can be considered as good candidates for actinide-rich nuclear wastes (containing minor actinides or Pu) immobilization. In this study, three different methods are envisaged and compared to prepare such waste forms using neodymium as trivalent actinides surrogate. Independently on the preparation method, zirconolite is shown to be the only crystalline phase to nucleate in the bulk. However, crystallization of silicate phases (titanite CaTiSiO5 + anorthite CaAl2Si2O8) can occur from samples surface and can compete with zirconolite crystallization. The effect of the crystal growth thermal treatment duration (2–300 h) at high temperature (1050–1200°C) on glass-ceramics structure and microstructure is studied. In the oxides system studied here, it appears that zirconolite is not thermodynamically stable in comparison with titanite but, for kinetics reasons, such transformation will not occur during waste forms disposal.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Donald, I. W., Metcalfe, B. L., Taylor, R. N. J., J. Mater. Science 32 (1997) 58 Google Scholar
2. Hayward, P. J. in Radioactive Waste Forms for the Future, edited by Lutze, W. and Ewing, R. C., (Elsevier, 1988) pp. 427493.Google Scholar
3. Fillet, C., Marillet, J., Dussossoy, J. L., Pacaud, F., Jacquet-Francillion, N., Phalippou, J., Ceramic Transactions 87 (1997) 531.Google Scholar
4. Loiseau, P., Caurant, D., Baffier, N., Mazerolles, L. and Fillet, C., Mat. Res. Soc. Symp. Proc. 663, 179 (2001).Google Scholar
5. Loiseau, P., Caurant, D., Bardez, I., Majerus, O., Baffier, N. and Fillet, C., Mat. Res. Soc. Symp. Proc. 757 (2003) (in press).Google Scholar
6. Loiseau, P., Caurant, D., Majerus, O., Baffier, N., Mazerolles, L. and Fillet, C., Phys. Chem. Glasses 43C, 195 (2002).Google Scholar
7. Loiseau, P., Caurant, D., Majerus, O., Baffier, N. and Fillet, C., J. Mater. Science. 38, 843 (2003).Google Scholar
8. Strnad, Z. in Glass-Ceramic Materials (Elsevier 1986) pp. 928.Google Scholar