Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T10:02:51.572Z Has data issue: false hasContentIssue false

Comparison of Theoretical Approaches Predicting the Coherent-Semicoherent Transition in Nanoscale Axial Heterostructures

Published online by Cambridge University Press:  18 March 2014

Thomas Riedl*
Affiliation:
University of Paderborn, Department of Physics, Warburger Straße 100, 33098 Paderborn, Germany Center for Optoelectronics and Photonics Paderborn (CeOPP), Warburger Straße 100, 33098 Paderborn, Germany
Joerg K.N. Lindner
Affiliation:
University of Paderborn, Department of Physics, Warburger Straße 100, 33098 Paderborn, Germany Center for Optoelectronics and Photonics Paderborn (CeOPP), Warburger Straße 100, 33098 Paderborn, Germany
*
*Corresponding author. Email: [email protected]
Get access

Abstract

The formation of misfit dislocations is an important issue for the performance of heteroepitaxial micro- and optoelectronic devices. We analyze three approaches that quantify the stability of misfit dislocations in axial-heteroepitaxial nanowires with respect to applicability and predictions of critical nanowire dimensions. The “nanoheteroepitaxy” approach of Zubia and Hersee proves suitable for determination of strain partitioning in the presence of an elastic mismatch. Concerning the critical thickness and diameter however the descriptions of Ertekin et al. and Glas respectively yield more reliable results, owing to the consideration of the total coherent and dislocation related energies plus the residual strain energy. In contrast to the model of Ertekin et al., which refers to infinitely long nanowires, the other two mentioned approaches allow predictions of the critical thickness of mismatched deposits on the nanowire axial face.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Morkoc, H., Vacuum 42, 257 (1991).10.1016/0042-207X(91)90034-GCrossRefGoogle Scholar
Zubia, D. and Hersee, S. D., J. Appl. Phys. 111, 6492 (1999).10.1063/1.370153CrossRefGoogle Scholar
Zubia, D., Hersee, S. D. and Khraishi, T., Appl. Phys. Lett. 80, 740 (2002).10.1063/1.1445803CrossRefGoogle Scholar
Ertekin, E., Greaney, P. A., Sands, T. D. and Chrzan, D. C., Mater. Res. Soc. Symp. Proc. 737, 769 (2003).Google Scholar
Ertekin, E., Greaney, P. A., Chrzan, D. C. and Sands, T. D., J. Appl. Phys. 97, 114325 (2005).10.1063/1.1903106CrossRefGoogle Scholar
Kästner, G. and Gösele, U., Phil. Mag. 84, 3803 (2004).10.1080/1478643042000281389CrossRefGoogle Scholar
Glas, F., Phys. Rev. B74, 121302(R) (2006).10.1103/PhysRevB.74.121302CrossRefGoogle Scholar
Barton, M. V., J. Appl. Mech. A8, 97 (1941).Google Scholar
Ye, H., Lu, P., Yu, Z., Song, Y., Wang, D. and Wang, S., Nanolett. 9, 1921 (2009).10.1021/nl900055xCrossRefGoogle Scholar
Luryi, S. and Suhir, E., Appl. Phys. Lett. 49, 140 (1986).10.1063/1.97204CrossRefGoogle Scholar
Hirth, J. P. and Lothe, J., Theory of Dislocations (Wiley, 1982).Google Scholar
Lu, P. F. and Wang, S. M., International Conference on Indium Phosphide and Related Materials, Matsue, Japan, Proceedings p. 447 (2007).Google Scholar