Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-10-02T21:29:25.596Z Has data issue: false hasContentIssue false

Comparison of the Three Classes (Rare Earth, Refractory and Near-Noble) of Silicide Contacts

Published online by Cambridge University Press:  15 February 2011

R. D. Thompson
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, NY 10598 (U.S.A.)
K. N. Tu
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, NY 10598 (U.S.A.)
Get access

Extract

It is well established that near-noble metals and refractory metals form two distinct classes of silicide contacts with silicon. Rare earth metals have been studied in the same manner and found to form a new class that is very distinct from the other two in terms of properties and characteristics. Some of these characteristics are the formation of a disilicide phase, as an apparently first and last phase, at a surprisingly low temperature (250–400°C). Marker motion study using implanted krypton and argon showed silicon to be the dominant diffusing species for ErSi2. The Schottky barrier height to n-Si is 0.40 ± 0.04 eV and to p-Si is 0.70 ± 0.04 eV for all six of the metals studied. The surface morphology after reaction indicates the formation of a tensile stress by the silicide reaction. Oxidation of the rare earth metals is a severe problem although a variety of passivation schemes have been shown to work.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Thompson, R. D., Tsaur, R. Y. and Tu, K. N., Appl. Phys. Lett., 38 (1981) 535.Google Scholar
2 Baglin, J. E. E., d'Heurle, F. M. and Petersson, C. S., Appl. Phys. Lett., 36 (1980) 594.Google Scholar
3 Tu, K. N., J. Vac. Sci. Technol., 19 (1981) 766.CrossRefGoogle Scholar
4 Muraka, S. D., J. Vac. Sci. Technol., 17(1980) 775.Google Scholar
5 Smirnov, A., Tove, D. A., Sousa Pires, J. de and Norde, H., Appl. Phys. Lett., 36 (1980) 313.CrossRefGoogle Scholar
6 Ohdomari, I. and Tu, K. N., J. Appl. Phys., 51 (1980) 3735.Google Scholar
7 Finstad, T. G. and Nicolet, M.-A., J. Appl. Phys., 50 (1979) 303.Google Scholar
8 Harris, J. M., Lau, S. S., Nicolet, M.-A. and Nowicki, R. S., J. Electrochem. Soc., 123 (1976) 120.Google Scholar
9 Ottaviani, G., Tu, K. N., Mayer, J. W. and Tsaur, B. Y., Appl. Phys. Lett., 36 (1980) 331.Google Scholar
10 Thompson, R., Eizenberg, M. and Tu, K. N., J. Appl. Phys., 52 (1981) 6763.Google Scholar
11 Thompson, R. D. and Tu, K. N., J. Appl. Phys., 53(1982)4285.CrossRefGoogle Scholar
12 Thompson, R. D. and Tu, K. N., J. Appl. Phys., 53 (1982), in the press.Google Scholar