Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T02:04:29.408Z Has data issue: false hasContentIssue false

Comparison of the Electroluminescence of Blue and Deep-UV Light-Emitting Diodes at Elevated Temperatures

Published online by Cambridge University Press:  01 February 2011

Xian-An Cao
Affiliation:
[email protected], GE GRC, One Research Circle, Niskayuna, NY, 12309, United States
T. Stecher
Affiliation:
S. LeBoeuf
Affiliation:
Get access

Abstract

The performance of InGaN and AlGaN-based blue (465nm) and deep ultraviolet (UV) (280 nm) light-emitting diodes (LEDs) at elevated temperatures (25-175 °C) were investigated. As a result of uniform high-Al content AlGaN alloys yielded by migration-enhanced metalorganic chemical vapor deposition, the deep-UV LED showed dominant band-edge emission, much smaller alloy broadening and weaker localization effects as compared to the InGaN LED. Strong carrier localization was retained in the blue LED up to 175 °C, leading to temperature-independent emission intensity at low-energy tails. The UV LED, however, showed a much more rapid decrease in light output with increasing temperature. The characteristic temperature was 37 K, compared to 270 K for the blue LED. These findings implicate the lack of localization effects in AlGaN alloys as one of the causal factors in the poor thermal performance of the deep UV LED and suggest that increasing carrier confining potentials will provide a critical means to improve its thermal stability.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zhang, J. P., Chitnis, A., Adivarahan, V., Wu, S., Mandavilli, V., Pachipulusu, R., Shatalov, M., Simin, G., Yang, J. W., and Asif Khan, M., Appl. Phys. Lett. 81, 4910 (2002).CrossRefGoogle Scholar
2. Adivarahan, V., Sun, W. H., Chitnis, A., Shatalov, M., Wu, S., Maruska, H. P., and Khan, M. A., Appl. Phys. Lett. 85, 2175 (2004).CrossRefGoogle Scholar
3. Zhang, J. P., Hu, X., Bilenko, Y., Deng, J., Lunev, A., Shur, M., Gaska, R., Shatalov, M., Yang, J. W., and Asif Khan, M., Appl. Phys. Lett. 85, 5532 (2004).CrossRefGoogle Scholar
4. Gaska, R., Compound Semiconductor, 4, 27 (2005).Google Scholar
5. Khizar, M., Fan, Z. Y., Kim, K. H., Lin, J. Y., and Jiang, H. X., Appl. Phys. Lett. 85, 173504 (2005).CrossRefGoogle Scholar
6. Mayes, K., Yasan, A., McClintock, R., Shiell, D., Darvish, S. R., Kung, P., and Razeghi, M., Appl. Phys. Lett. 84, 1046 (2004).CrossRefGoogle Scholar
7. Fischer, A. J., Allerman, A. A., Crawford, M. H., Bogart, K. H. A., Lee, S. R., Kaplar, R. J., Chow, W. W., Kurtz, S. R., Fullmer, K. W., and Figiel, J. J., Appl. Phys. Lett. 84, 3394 (2004).CrossRefGoogle Scholar
8. Smith, G. A., Dang, T. N., Nelson, T. R., Brown, J. L., Tsvetkov, D., Usikov, A., and Dmitriev, V., J. Appl. Phys. 95, 8247 (2004).CrossRefGoogle Scholar
9. Chitnis, A., Sun, J., Mandavilli, V., Pachipulusu, R., Wu, S., Gaevski, M., Adivarahan, V., Zhang, J. P., and Khan, M. A., Sarua, A. and Kuball, M., Appl. Phys. Lett. 81, 3491 (2002).CrossRefGoogle Scholar
10. Cao, X. A., Teetsov, J. M., D'Evelyn, M. P., Merfeld, D. W., and Yan, C. H., Appl. Phys. Lett. 84, 7 (2004).CrossRefGoogle Scholar
11. Nistor, L., Bender, H., Vantomme, A., Wu, M. F., Lauduyt, J. V., O'Donnell, K. P., Martin, R., Jacobs, K. and Moerman, I., Appl. Phys. Lett. 77, 507 2000.CrossRefGoogle Scholar
12. Cao, X.A., Leboeuf, S.F., Rowland, L.R., and Liu, H., J. Electron. Mater. 32 316 (2003).CrossRefGoogle Scholar
13. Monemar, B., Phys. Rev. B 10, 676 (1974).CrossRefGoogle Scholar
14. Schubert, E. F., Light-emitting diodes, Cambridge University Press, 2003.Google Scholar
15. Smith, M., Chen, G. D., Lin, J. Y., Jiang, H. X., Asif Khan, M., and Chen, Q., Appl. Phys. Lett. 69, 2837 (1996).Google Scholar