Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T17:45:58.885Z Has data issue: false hasContentIssue false

A Comparison of the Degradation and Annealing Kinetics in Amorphous Silicon and Amorphous Silicon-Germaniumsolar Cells

Published online by Cambridge University Press:  15 February 2011

D. E. Carlson
Affiliation:
Solarex, A Business Unit of BP/Amoco Solar, 3601 LaGrange Parkway, Toano, VA 23168
L. F. Chen
Affiliation:
Solarex, A Business Unit of BP/Amoco Solar, 3601 LaGrange Parkway, Toano, VA 23168
G. Ganguly
Affiliation:
Solarex, A Business Unit of BP/Amoco Solar, 3601 LaGrange Parkway, Toano, VA 23168
G. Lin
Affiliation:
Solarex, A Business Unit of BP/Amoco Solar, 3601 LaGrange Parkway, Toano, VA 23168
A. R. Middya
Affiliation:
Solarex, A Business Unit of BP/Amoco Solar, 3601 LaGrange Parkway, Toano, VA 23168
R. S. Crandall
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401
R. Reedy
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401
Get access

Abstract

The degradation and annealing kinetics of both a-Si:H and a-SiGe:H single-junction solar cells were investigated under varying conditions. In every case, the kinetics associated with degradation and annealing were slower for a-SiGe:H cells than for a-Si:H cells. Since deuterium diffusion studies indicate that the hydrogen in our a-SiGe:H films diffuses more slowly than that in the a-Si:H films, hydrogen motion may play a role in determining both the degradation and annealing kinetics of the devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Staebler, D. L. and Wronski, C. R., Appl. Phys. Lett. 31, p. 292 (1977).Google Scholar
2. Carlson, D. E. and Rajan, K., Proc. of 14th European Photovoltaic Solar Energy Conf., pp. 652655 (1997).Google Scholar
3. Terakawa, A., Isomura, M. and Tsuda, S., Jpn. J. Appl. Phys. 35, pp. 56125617 (1996).Google Scholar
4. Carlson, D. E. and Rajan, K., Appl. Phys. Lett. 70, p. 2168 (1997).Google Scholar
5. Carlson, D. E. and Rajan, K., J. Appl. Phys. 83, pp.17261729 (1998).Google Scholar
6. Carlson, D. E. and Rajan, K., Appl. Phys. Lett. 69, p. 1447 (1996).Google Scholar
7. Beyer, W., Weller, H. C. and Zastrow, U., J. Non-Cryst. Solids 137&138, pp. 3740 (1991).Google Scholar
8. Carlson, D. E. and Magee, C. W., Appl. Phys. Lett. 33, pp. 8183 (1978).Google Scholar
9. Dersch, H., Stuke, J. and Beichler, J., Appl. Phys. Lett. 38, p. 456 (1980).Google Scholar
10. Branz, H. M., Phys. Rev. B 59, 5498 (1999).Google Scholar