Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-09T09:41:31.112Z Has data issue: false hasContentIssue false

Comparison of Rapidly Solidified Nickel Base Superalloys Prepared by Melt Spinning and Plasma Deposition

Published online by Cambridge University Press:  21 February 2011

A.I. Taub
Affiliation:
General Electric Corporate Research and DevelopmentPO Box 8, Schenectady, NY 12301
M.R. Jackson
Affiliation:
General Electric Corporate Research and DevelopmentPO Box 8, Schenectady, NY 12301
S.C. Huang
Affiliation:
General Electric Corporate Research and DevelopmentPO Box 8, Schenectady, NY 12301
E.L. Hall
Affiliation:
General Electric Corporate Research and DevelopmentPO Box 8, Schenectady, NY 12301
Get access

Abstract

The microstructure and yield strength of two nickel base superalloys prepared by melt spinning and plasma deposition are compared in the as-solidified condition and after annealing. The results support the interpretation of the yield strengths obtained by tensile testing melt spun ribbon as representative of the values obtained for bulk specimens with equivalent microstructures. The effectiveness of grain size strengthening in a nickel base superalloy is also examined. The Hall-Petch relation appears to be obeyed, with a slope k = .77±.15 MPa−m1/2.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Davies, H.A., Shohoji, N. and Warrington, D.W. in: Rapid Solidification Processing, Principles and Technologies, II, Mehrabian, R., Kear, B.H. and Cohen, M., eds. (Claitors Publishing, Baton Rouge 1980) pp. 153164.Google Scholar
2. Wood, J.V., Mills, P.F., Waugh, A.R. and Bee, J.V., J. Mat. Sci. 15, 27092719 (1980).10.1007/BF00550537Google Scholar
3. Huang, S.C. and Ritter, A.M.: Proc. AIRE Symposium Chemistry and Physics of Rapidly Solidified Materials, St. Louis, MO, October 26–27, 1982, ed. B.J. Berkowitz and R.O. Scattergood, AIME, Pennsylvania, 1983, pp. 25–34.Google Scholar
4. Duflos, F. and Stohr, J., J. Mat. Sci. 17, 36413652 (1982).10.1007/BF00752209Google Scholar
5. Ray, R., J. Mat. Sci. Letters 16, 29247–2927 (1981).Google Scholar
6. Giessen, B.C., Polk, D.E., Ray, R., US Patent # 4,297,135, Oct. 27, 1981.Google Scholar
7. Inoue, A., Kojima, Y., Minemura, T. and Masumoto, T., Metall. Trans. 12A,12451253 (1981).10.1007/BF02642338Google Scholar
8. Cheeks, T.L., Glicksman, M.E., Jackson, M.R. and Hall, E.L. in: Rapid Solidification Processing, Principles and Technologies III, Mehrabian, R., ed. (National Bureau of Standards, Gaithersburg, 1982) pp. 118123.Google Scholar
9. Ritter, A.M. and Jackson, M.R., ref. 8, pp. 270–275.Google Scholar
10. Taub, A.I. and Walter, J.L.: Mat. Sci. Eng., 62 (1984) 249.10.1016/0025-5416(84)90228-3Google Scholar
11. Amato, R.A., Jackson, M.R. and Siemers, P.A., ref. 8, pp. 547–558.Google Scholar
12. Thompson, A.W., Acta Metall. 23, 13371342 (1975).10.1016/0001-6160(75)90142-XGoogle Scholar
13. Schulson, E.M. and Barker, D.R., Scripta Mletall. 17, 519–22 (1983).10.1016/0036-9748(83)90344-7Google Scholar
14. Armstrong, R.W., Adv. Mat. Res. 4, 101146 (1970).Google Scholar
15. Wilcox, B.A. and Clauer, A.H., Acta Metall. 20, 743757 (1972).10.1016/0001-6160(72)90103-4Google Scholar
16. Rairden, J.R., Jackson, M.R. and Henry, M.F., “The Effects of Low-Pressure Plasma Spray Processing Conditions on the Properties of a Nickel-Based Superalloy”, Proc. of the 10th International Thermal Spraying Conf. Essen, FRG. April, 1983.Google Scholar