Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T14:31:40.495Z Has data issue: false hasContentIssue false

Comparison of Pr-doped Ca 122 and Ca 112 Pnictides by Low-field Microwave Absorption Spectroscopy

Published online by Cambridge University Press:  11 September 2014

Austin R. Howard
Affiliation:
The University of Texas at Dallas, Richardson, TX 75080, U.S.A.
Jonathan D. Yuen
Affiliation:
The University of Texas at Dallas, Richardson, TX 75080, U.S.A.
Bing Lv
Affiliation:
Texas Center for Superconductivity, University of Houston, Houston, TX 77004
Myron Salamon
Affiliation:
The University of Texas at Dallas, Richardson, TX 75080, U.S.A. MPA-CMMS, Los Alamos National Laboratory, Los Alamos, NM 87545
Ching-Wu Chu
Affiliation:
Texas Center for Superconductivity, University of Houston, Houston, TX 77004
Anvar A. Zakhidov
Affiliation:
The University of Texas at Dallas, Richardson, TX 75080, U.S.A.
Get access

Abstract

Praseodymium doped CaFe2As2 (122 structure) and CaFeAs2 (112 structure) are characterized by modulated Low Magnetic Field Microwave Absorption (LFMA) spectroscopy. In both (Pr,Ca)122 and (Pr,Ca)112 structures, a strong hysteretic LFMA is found, with a TcH of ∼30 K and ∼26 K, respectively. However, in (Pr,Ca)122, measurements also show an unusual Narrow Peak (NP) LFMA signal appearing at higher temperatures, above the lower TcH superconducting state until a TcNP of 49 K. We associate this NP LFMA with interfacial superconductivity, which has been found previously by highly anisotropic magnetization measurements. Furthermore, the absence of NP in (Pr,Ca)112 correlates with the absence of an interfacial phase. These results give useful information about the microwave signature of interfacial superconductivity present in the (Pr,Ca)122 system, and may form a roadmap towards a stabilized high temperature superconducting phase in pnictides.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sasmal, K., Lv, B., Lorenz, B., Guloy, A. M., Chen, F., Xue, Y.-Y., and Chu, C.-W., Phys. Rev. Lett. 101, 107007 (2008).10.1103/PhysRevLett.101.107007CrossRefGoogle Scholar
Lv, B., Deng, L., Gooch, M., Wei, F., Sun, Y., Meen, J. K., Xue, Y.-Y., Lorenz, B., and Chu, C.-W., Proceedings of the National Academy of Sciences 108, 15705 (2011).10.1073/pnas.1112150108CrossRefGoogle Scholar
Kim, J. S., Khim, S., Yan, L., Manivannan, N., Liu, Y., Kim, I., Stewart, G. R., and Kim, K. H., J. Phys.: Condens. Matter 21, 102203 (2009).Google Scholar
Chu, C. W. and Lorenz, B., Physica C: Superconductivity 469, 385 (2009).10.1016/j.physc.2009.03.030CrossRefGoogle Scholar
Rotter, M., Tegel, M., and Johrendt, D., Phys. Rev. Lett. 101, 107006 (2008).10.1103/PhysRevLett.101.107006CrossRefGoogle Scholar
Yakita, H., Ogino, H., Okada, T., Yamamoto, A., Kishio, K., Tohei, T., Ikuhara, Y., Gotoh, Y., Fujihisa, H., Kataoka, K., Eisaki, H., and Shimoyama, J.-I., J. Am. Chem. Soc. 136, 846 (2014).10.1021/ja410845bCrossRefGoogle Scholar
Katayama, N., Kudo, K., Onari, S., Mizukami, T., Sugawara, K., Sugiyama, Y., Kitahama, Y., Iba, K., Fujimura, K., Nishimoto, N., Nohara, M., and Sawa, H., J. Phys. Soc. Jpn. 82, (2013).10.7566/JPSJ.82.123702CrossRefGoogle Scholar
Wei, F. Y., Lv, B., Deng, L. Z., Meen, J. K., Xue, Y. Y., and Chu, C. W., Multiple Values Selected (2013).Google Scholar
Kudo, K., Iba, K., Takasuga, M., Kitahama, Y., Matsumura, J.-I., Danura, M., Nogami, Y., and Nohara, M., Sci. Rep. 3, (2013).Google Scholar
Lund, A., Shigetaka, S., and Shimada, M., Principles and Applications of ESR Spectroscopy (Springer, Dordrecht, 2011).10.1007/978-1-4020-5344-3CrossRefGoogle Scholar
Talanov, Y., Studies of High Temperature Superconductors 49, 169 (2005).Google Scholar
Stankowski, J., Metrology and Measurement Systems Vol. 13, 125 (2006).Google Scholar
Shaposhnikova, T., Talanov, Y., and Tsarevskii, S., Physica C: Superconductivity 451, 90 (2007).10.1016/j.physc.2006.10.009CrossRefGoogle Scholar
Shaposhnikova, T., Talanov, Y., and Vashakidze, Y., Physica C: Superconductivity 385, 383 (2003).10.1016/S0921-4534(02)02103-2CrossRefGoogle Scholar
Lv, B., Wei, F. Y., Deng, L. Z., Xue, Y. Y., and Chu, C. W., arXiv:1308.3129v1 (2013).Google Scholar
Nebendahl, B., Kessler, C., Peligrad, D.-N., and Mehring, M., Physica C: Superconductivity and Its Applications 209, 362 (1993).10.1016/0921-4534(93)90546-3CrossRefGoogle Scholar
Hunter, J. D., Comput. Sci. Eng. 9, 90 (2007).10.1109/MCSE.2007.55CrossRefGoogle Scholar