No CrossRef data available.
Article contents
Comparison Between Atomistic and Continuum-Mechanics Modelling of Grain-Boundary Fracture
Published online by Cambridge University Press: 10 February 2011
Abstract
We use the Peierls-Nabarro continuum mechanics model of dislocation nucleation, modified according to the results of atomistic simulations, to interpret the experimental results of fracture response in symmetric-tilt grain boundaries in Cu. We then directly perform Molecular Dynamics simulations of fracture propagation and dislocation emission from a microcrack placed in the interface plane of the symmetric-tilt (221)(221) grain boundary in fee Cu. Direction-dependent fracture response is observed in agreement with experiments, namely the microcrack advancing by brittle fracture along the [114] direction and being blunted by dislocation emission along the opposite [114] direction. Moreover, we are able to quantify important differences with respect to the continuum model due to the shielding of the stress field at the crack-tip and to the presence of the excess stress at the interface.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1998