Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-07T20:22:53.926Z Has data issue: false hasContentIssue false

Comparative SEM and Cathodoluminescence Microanalysis of Porous GaP Structures

Published online by Cambridge University Press:  17 March 2011

M.A. Stevens-Kalceff
Affiliation:
Department of Applied Physics, University of Technology, Sydney, Australia
S. Langa
Affiliation:
Laboratory of Low-Dimensional Semiconductor Structures, Technical University of Moldova, Chisinau, Moldova
I.M. Tiginyanu
Affiliation:
Laboratory of Low-Dimensional Semiconductor Structures, Technical University of Moldova, Chisinau, Moldova
J. Carstensen
Affiliation:
Materials Science Department, Christian-Albrechts University, Kiel, Germany
M. Christophersen
Affiliation:
Materials Science Department, Christian-Albrechts University, Kiel, Germany
H. Föll
Affiliation:
Materials Science Department, Christian-Albrechts University, Kiel, Germany
Get access

Abstract

Electron microscopy and cathodoluminescence (CL) microanalysis were used for a comparative study of porous layers fabricated by electrochemical etching of n-GaP substrates in a sulfuric acid solution. Both the CL and morphology of porous layers were found to depend upon the anodic current density. At high current density (100 mA/cm2) anodization leads to the formation of so-called current-line oriented pores and an increase in the CL intensity. We observed self-induced voltage oscillations giving rise to a synchronous modulation of the diameter of pores and CL intensity. When the current density decreased to values as low as 1 mA/cm2 the pores began to grow along <111> crystallographic directions and the CL intensity was observed to be lower than that of bulk GaP.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cullis, A.G., Canham, L.T., and Calcott, P.D.J., J. Appl. Phys. 82, 909 (1997).Google Scholar
2. Tiginyanu, I.M., Irmer, G., Monecke, J., and Hartnagel, H.L., Phys. Rev. B 55, 6739 (1997).Google Scholar
3. Tiginyanu, I.M. and Hartnagel, H.L., in: GAAS'99 Conf. Proc. (Munich, Germany, October 4 to 5, 1999), Miller Freeman (UK) 1999 (pp. 194 to 199).Google Scholar
4. Tiginyanu, I.M., Kravetsky, I.V., Marowsky, G., Monecke, J., and Hartnagel, H.L., Phys. Stat. Sol. (b) 221, 557 (2000).Google Scholar
5. Tiginyanu, I.M., Kravetsky, I.V., Monecke, J., Cordts, W., Marowsky, G., and Hartnagel, H.L., Appl. Phys. Lett. 77, 2415 (2000).Google Scholar
6. Takizawa, T., Arai, Sh., and Nakahara, M., Jap. J. Appl. Phys. 54, L643 (1994).Google Scholar
7. Kuriyama, K., Ushiyama, K., Ohbora, K., Miyamoto, Y., and Takeda, S., Phys. Rev. B 58, 1103 (1998).Google Scholar
8. Anedda, A., Serpi, A., Karavanski, V.A., Tiginyanu, I.M., and Ichizli, V.M., Appl. Phys. Lett. 67, 3316 (1995).Google Scholar
9. Schmuki, P., Lockwood, D.C., Labbe, H.J., and Fraser, J.M., Appl. Phys. Lett. 69, 1620 (1996).Google Scholar
10. Schmuki, P., Erickson, L.E., Lockwood, D.J., Fraser, J.W., Champion, G., and Labbe, H.I., Appl. Phys. Lett. 72, 1039 (1998).Google Scholar
11. Belogorokhov, A.I., Karavanskii, V.A., Obraztsov, A.N., and Timoshenko, V.Yu., JETP Lett. 60, 274 (1994).Google Scholar
12. Langa, S., Tiginyanu, I.M., Carstensen, J., Christophersen, M. & Föll, H., Electrochem. & Sol.-St. Lett. 3, 514 (2000).Google Scholar
13. Allonque, P., Willeneuve, C. Henry de, Pinsard, L., Bernard, M.C., Appl. Phys. Lett. 67, 941 (1995).Google Scholar