Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T21:37:31.483Z Has data issue: false hasContentIssue false

Comparative Raman and Transmission Electron Microscopy Analysis of the Evolution of Platelet Defects in Plasma Hydrogenated and Annealed Czochralski Silicon

Published online by Cambridge University Press:  01 February 2011

R. Job
Affiliation:
University of Hagen, P.O. Box 940, D-58084 Hagen, Germany
M.-F. Beaufort
Affiliation:
University of Poitiers, F-86962 Futuroscope Chasseneuil, Cedex, France
J.-F. Barbot
Affiliation:
University of Poitiers, F-86962 Futuroscope Chasseneuil, Cedex, France
A. G. Ulyashin
Affiliation:
University of Hagen, P.O. Box 940, D-58084 Hagen, Germany
W. R. Fahrner
Affiliation:
University of Hagen, P.O. Box 940, D-58084 Hagen, Germany
Get access

Abstract

Standard p- and n-type Czochralski (Cz) silicon wafers were hydrogenated by a RF (13.56 MHz) hydrogen plasma at moderate temperatures (250 °C). After plasma hydrogenation and subsequent annealing up to 600 °C the formation and of H2 molecules in voids and platelets was investigated by Raman spectroscopy. The Raman intensities of the H2 vibration modes at ∼ 4150 cm-1 exhibited significant intensity modulations in dependence on the annealing temperature. The intensities of the H2 Raman lines indirectly monitor the evolution of the voids and platelets upon annealing. This assumption was verified by cross-sectional transmission electron microscopy (XTEM), which was applied for comparison. The intensity modulations of the H2 Raman signal can be explained by the evolution of the well known {111} and {001} platelets. At lower annealing temperatures (< 500 °C) platelets laying in {111} planes are dominant, while at elevated temperatures (> 500 °C) [001]-oriented platelets become more and more important. In addition in p-type material by XTEM also {110} platelets could be observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Job, R., Ulyashin, A.G., Fahrner, W.R., Mater. Sci. Semicond. Proc. 4, 257 (2001)Google Scholar
2. Job, R., Ulyashin, A.G., Fahrner, W.R., Diffusion & Defect Data Pt. B: Solid State Phenomena 82-84, 139 (2002)Google Scholar
3. Leitch, A.W.R., Alex, V., Weber, J., Solid State Commun. 105, 215 (1998)Google Scholar
4. Leitch, A.W.R., Alex, V., Weber, J., Phys. Rev. Lett. 81, 421 (1998)Google Scholar
5. Johnson, N.M., Ponce, F.A., Street, R.A., Nemanich, R.J., Phys. Rev. B 35, 4166 (1987)Google Scholar
6. Stoicheff, B.P., Can. J. Phys. 35, 730 (1957)Google Scholar
7. Hwang, K.H., Yoon, E., Whang, K.W., Lee, J.Y., Appl. Phys. Lett. 67, 3590 (1995)Google Scholar
8. Hwang, K.H., Park, J.W., Yoon, E., Whang, K.W., Lee, J.Y., J. Appl. Phys. 81, 74 (1997)Google Scholar
9. Hwang, K.H., Yoon, E., Whang, K.W., Lee, J.Y., J. Electrochem. Soc. 144, 335 (1997)Google Scholar
10. Weldon, M.K., Marsico, V.E., Chabal, Y.J., Agarwal, A., Eaglesham, D.J., Sapjeta, J., Brown, W.L., Jacobson, D.C., Caudano, Y., Christman, S.B., Chaban, E.E., J. Vac. Sci. Technol. B 15, 1065 (1997)Google Scholar
11. Lu, X., Cheung, N.W., Strathman, M.D., Chu, P.K., Doyle, B., Appl. Phys. Lett. 71, 1804 (1997)Google Scholar
12. Bruel, M., Electron. Lett. 31, 1201 (1995)Google Scholar
13. Ulyashin, A.G., Job, R., Fahrner, W.R., Grambole, D., Herrmann, F., Diffusion & Defect Data Pt. B: Solid State Phenomena 82-84, 315 (2002)Google Scholar
14. Fukata, N., Sasaki, S., Murakami, K., Ishioka, K., Jpn. J. Appl. Phys. 35, L1069 (1996).Google Scholar
15. Nakamura, K.G., Ishioka, K., Kitajima, M., Murakami, K., Solid State Commun. 101, 735 (1997)Google Scholar