Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T21:24:43.708Z Has data issue: false hasContentIssue false

Comparative Analysis of MBE-grown GaN Films on SiC, ZnO and LiGaO2 Substrates

Published online by Cambridge University Press:  01 February 2011

F. Yun
Affiliation:
Virginia Commonwealth University, Dept. of Electrical Engineering, Richmond, VA23284
M. A. Reshchikov
Affiliation:
Virginia Commonwealth University, Dept. of Electrical Engineering, Richmond, VA23284
L. He
Affiliation:
Virginia Commonwealth University, Dept. of Electrical Engineering, Richmond, VA23284
T. King
Affiliation:
Virginia Commonwealth University, Dept. of Electrical Engineering, Richmond, VA23284
D. Huang
Affiliation:
Virginia Commonwealth University, Dept. of Electrical Engineering, Richmond, VA23284
H. Morkoç
Affiliation:
Virginia Commonwealth University, Dept. of Electrical Engineering, Richmond, VA23284
Jeff Nause
Affiliation:
Cermet, Inc., Atlanta GA 30318
Gene Cantwell
Affiliation:
Eagle Picher Technologies, LLC., Maimi, OK 74354
H. Paul Maruska
Affiliation:
CPI Crystal Photonics, Inc., Sanford, FL 32773
C. W. Litton
Affiliation:
Air Force Research Laboratory (AFRL/MLPS), Wright Patterson AFB, OH 45433
Get access

Abstract

We report the growth of GaN films by RF-MBE on SiC, ZnO, and LiGaO2 substrates, without buffer layers. Structural and optical properties of the films were probed by AFM for surface morphology, XRD for crystalline structure, and PL for optical properties. The dependence of GaN layer quality on the substrates and their surface pre-treatment prior to growth was studied within a similar MBE growth parameter matrix for all samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Strite, S.T. and Morkoç, H., J. Vac. Sci. & Technol., B10, 1237, (1992)Google Scholar
2 Morkoç, H., “Nitride Semiconductors and Devices”, Springer Verlag 1999. ISSN 0933-033x, ISBN 3-540-64038.Google Scholar
3 Nam, O.H., Bremser, M.D., Zheleva, T.S., and Davis, R.F., Appl. Phys. Lett., 71, 2638, (1997)Google Scholar
4 Pearton, S. J., Zolper, J. C., Shul, R. J., and Ren, F., J. Appl. Phys., 86, 1, (1999)Google Scholar
5 Fini, P., Zhao, L., Moran, B., Hansen, M., Marchand, H., Ibbetson, J. P., DenBaars, S. P., Mishra, U. K., and Speck, J. S., Appl. Phys. Lett. 75, 1706, (1999)Google Scholar
6 Hamdani, F., Yeadon, M., Smith, David J., Tang, H., Kim, W., Salvador, A., Botchkarev, A. E., Polyakov, J. M., Skowronski, M., and MorkoΔ, H., J. Appl. Phys. 83, 983, (1998)Google Scholar
7 Morkoç, H., in “Wide Energy Bandgap Electronics” Eds. Pearton, S. and Ren, F., World Scientific, in press.Google Scholar
8 Ishii, T., Tazoh, Y. and Miyazawa, S., Jpn. J. Appl. Phys. 36, part 2, L139(1997).Google Scholar
9 Doolittle, W. A., Kang, S., and Brown, A., Solid-State Electronics 44, 229, (2000)Google Scholar
10 Powell, J. A., Larkin, D. J., Neudeck, P. G., Yang, J. W. and Pirouz, P., in Silicon Carbide and Related Materials, Spencer, M. G., Devaty, R. P., Edmond, J. A. et al. Bristol, IOP Publishing: 161164, (1994).Google Scholar
11 Lee, C. D., Ramachandran, V., Sagar, A., Feenstra, R. M., Greve, D. W., Sarney, W. L., Salamanca-Riba, L., Look, D. C., Bai, Song, Choyke, W. J., Devaty, R. P., TMS; IEEE. Journal of Electronic Materials, 30, 162, (2001)Google Scholar
12 Ruterana, P., Vermaut, Philippe, Nouet, G., Salvador, A., and Morkoç, H., MRS Internet Journal of Nitride Semicond. Res. 2, 42, (1997)Google Scholar
13 Kung, P., Saxler, A., Zhang, X., Walker, D., Lavao, R., and Razeghi, M., Appl. Phys. Lett. 69, 2116, (1996)Google Scholar
14 Tazoh, Y., Ishii, T., and Miyazawa, S., Jpn. J. Appl. Phys. 36, Part 2, L746(1997).Google Scholar