Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T15:16:07.565Z Has data issue: false hasContentIssue false

A Compact Planar Magnetron Plasma Sputtering Device for TiO2 Deposition

Published online by Cambridge University Press:  29 November 2013

Michelle Marie S. Villamayor
Affiliation:
National Institute of Physics, University of the Philippines – Diliman, Quezon City, 1101 Philippines.
Kenta Doi
Affiliation:
Graduate School of Science and Engineering, Doshisha University, Kyoto 610-0321, Japan.
Edna Mae D. Cruz
Affiliation:
Bulacan Agricultural State College, Pinaod, San Ildefonso, Bulacan, 3010 Philippines
Freya Gay J. Avenir
Affiliation:
Bulacan State University, Malolos City, 3000 Philippines
Motoi Wada
Affiliation:
Graduate School of Science and Engineering, Doshisha University, Kyoto 610-0321, Japan.
Henry J. Ramos
Affiliation:
National Institute of Physics, University of the Philippines – Diliman, Quezon City, 1101 Philippines.
Get access

Abstract

A Compact Planar Magnetron Plasma Sputtering Deposition Device (CPM-PSDD) has been used to deposit TiO2 on silicon, glass and cotton cloth. An 80 mm diameter Ti target was placed at the cathode and was sputtered by argon-oxygen plasma with 10-20 mA discharge current and -300 V to -450 V discharge potential. Reactive oxygen gas fed into the system at 13:1 Ar:O2 sccm ratio for the deposition durations between one to four hours. The deposited films exhibited both anatase and rutile phases. Cotton cloths were dipped in methyl blue to evaluate the photocatalytic activity of the film.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Nakata, K., Fujishima, A., Journal of photochemistry and photobiology C: Photochemistry Reviews 13(2012) 169189 10.1016/j.jphotochemrev.2012.06.001CrossRefGoogle Scholar
Mallak, M., Bockmeyer, M., Lobmann, P., Thin Solid Films 515(2007) 80728077 10.1016/j.tsf.2007.03.184CrossRefGoogle Scholar
Chen, X., Mao, S., Chem. Rev. 107 (2007) 28912959 10.1021/cr0500535CrossRefGoogle Scholar
Zaman, A. C., Umstundag, C. B., Kaya, F., Kaya, C., Materials Letter 66(2012) 179181 10.1016/j.matlet.2011.08.020CrossRefGoogle Scholar
Barra, H. M. D., Ramos, H. J., World Academy of Science, Engineering and Technology 50 (2011) 282284 Google Scholar
Mills, A, Wang, J., Crow, M., Taglioni, G., Novella, L., Journal of Photochemistry and Photobiology A: Chemistry 187 (2007) 370376 10.1016/j.jphotochem.2006.11.004CrossRefGoogle Scholar
Pozzo, R. L., Baltanas, M. A., Cassano, A. E., Catalysis Today 39 3 (1997) 219231 10.1016/S0920-5861(97)00103-XCrossRefGoogle Scholar
Navrátil, Z., Trunec, D., Šmíd, R. and Lazar, L., Czechozlovak Journal of Physics 56 (2006) B944951 10.1007/s10582-006-0308-yCrossRefGoogle Scholar
Ramos, H. J., Valmoria, N. B., Vacuum 73 3-4 (2004) 549554 10.1016/j.vacuum.2003.12.158CrossRefGoogle Scholar